储能科学与技术 ›› 2024, Vol. 13 ›› Issue (11): 4177-4186.doi: 10.19799/j.cnki.2095-4239.2024.0566

• 储能测试与评价 • 上一篇    下一篇

基于正交实验的双流体喷雾对电池包内热失控锂电池降温效果研究

朱鹏杰1(), 李伟1(), 张楚1, 宋浩1, 李贝贝1, 刘秀梅1, 刘利利2   

  1. 1.中国矿业大学机电工程学院,江苏 徐州 221116
    2.江苏八方安全设备有限公司,江苏 徐州 221000
  • 收稿日期:2024-06-21 修回日期:2024-07-16 出版日期:2024-11-28 发布日期:2024-11-27
  • 通讯作者: 李伟 E-mail:ts22050217p31@cumt.edu.cn;cmeetechnologylw@163.com
  • 作者简介:朱鹏杰(1996—),男,硕士研究生,主要从事储能系统电池热失控预警及消防方面研究,E-mail:ts22050217p31@cumt.edu.cn
  • 基金资助:
    中央高校基本科研业务费重大培育项目(2021ZDPY0222);在徐高校服务“343”产业发展项目(2024050006)

Research on cooling effect of dual-fluid spray on thermal runaway in lithium batteries: An orthogonal experiment study

Pengjie ZHU1(), Wei LI1(), Chu ZHANG1, Hao SONG1, Beibei LI1, Xiumei LIU1, Lili LIU2   

  1. 1.School of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
    2.Jiangsu Bafang Safety Equipment Limited Company, Xuzhou 221000, Jiangsu, China
  • Received:2024-06-21 Revised:2024-07-16 Online:2024-11-28 Published:2024-11-27
  • Contact: Wei LI E-mail:ts22050217p31@cumt.edu.cn;cmeetechnologylw@163.com

摘要:

锂电池热失控具有温升速率快、易蔓延、化学反应复杂等特点,一般消防措施难以对其进行快速灭火降温。本工作提出使用CO2和水组成低压双流体雾化喷雾消防系统,将此系统应用于液冷型电池包内热失控锂电池的消防降温,监测电池包内部以及电池温度变化,设计正交试验探究双流体喷雾各因素对电池包内的热失控锂电池降温效果的影响程度,分析各因素对于实验结果的影响。实验结果表明:双流体喷雾在电池包内的弥漫特性良好,能够对位于雾化喷嘴正下方的热失控电池进行有效降温,并且气体压力越高,水流量越大,喷嘴气孔数越多,雾滴弥漫性越好,电池降温时间越短,其中,雾化气体压力对实验结果的影响最为显著。最优水平参数下组合的双流体喷雾能够在较短时间内将热失控电池降温至安全温度,并有效抑制热量进一步传播。本工作研究成果在成本、环保性、二次伤害及降温效果上均优于传统灭火系统,可为储能电站及储能柜消防系统设计提供一种新的思路。

关键词: 磷酸铁锂电池, 热失控, 双流体, 正交试验, 降温, 液冷型电池包

Abstract:

Thermal runaway in lithium batteries is characterized by rapid temperature increases, easy propagation, and complex chemical reactions, making it difficult for conventional fire protection measures to quickly extinguish and cool affected batteries. This study proposes a low-pressure dual-fluid atomization spray fire protection system utilizing CO2 and water, specifically designed for the fire protection and cooling of thermally runaway lithium batteries within liquid-cooled battery packs. The system monitors temperature changes both within the battery pack and individual batteries. An orthogonal experiment was conducted to investigate the influence of dual-fluid spray parameters on the cooling effect of thermally runaway lithium batteries, analyzing the impact of these factors on the results. Experimental findings demonstrate that the dual-fluid spray exhibits excellent diffusion characteristics within the battery pack, effectively cooling the thermally runaway battery located directly beneath the atomizing nozzle. Increased gas pressure, higher water flow rates, and a greater number of nozzle holes enhance droplet diffusion and significantly reduce battery cooling time. Among these factors, the atomizing gas pressure exerts the most significant influence on the experimental outcomes. Under optimal conditions, the dual-fluid spray system rapidly cools thermally runaway batteries to safe temperatures and effectively suppresses further heat propagation. This study's findings indicate that the proposed system surpasses traditional fire protection methods in terms of cost, environmental impact, and cooling effectiveness, presenting a novel solution for designing fire protection systems in energy storage stations and cabinets.

Key words: lithium iron phosphate battery, thermal runaway, dual-fluid, orthogonal experiment, cooling, liquid cooled battery pack

中图分类号: