储能科学与技术 ›› 2024, Vol. 13 ›› Issue (4): 1253-1265.doi: 10.19799/j.cnki.2095-4239.2024.0093

• 电池智能制造、在线监测与原位分析专刊 • 上一篇    下一篇

锂离子电池内部信号监测技术概述

王玉婷(), 李秋桐, 胡一鸣, 郭新()   

  1. 华中科技大学材料科学与工程学院,湖北 武汉 430074
  • 收稿日期:2024-01-30 修回日期:2024-03-13 出版日期:2024-04-26 发布日期:2024-04-22
  • 通讯作者: 郭新 E-mail:yuting_wang@hust.edu.cn;xguo@hust.edu.cn
  • 作者简介:王玉婷(1997—),女,博士研究生,研究方向为气体传感器,E-mail:yuting_wang@hust.edu.cn
  • 基金资助:
    国家重点研发计划(2021YFB2401900)

Techniques for monitoring internal signals of lithium-ion batteries

Yuting WANG(), Qiutong LI, Yiming HU, Xin GUO()   

  1. School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
  • Received:2024-01-30 Revised:2024-03-13 Online:2024-04-26 Published:2024-04-22
  • Contact: Xin GUO E-mail:yuting_wang@hust.edu.cn;xguo@hust.edu.cn

摘要:

锂离子电池在便携式电子产品、储能电站和电动汽车等领域得到了广泛的应用。然而,在电池容量不断上升的同时,锂离子电池的热失控风险也在增加,进而带来安全问题。现有的电池管理系统通过监测电池表面温度以及端电压来判断电池的健康状况。但是研究发现由于电池组件的多层结构和较差的导热性,电池内部温度、气体等很难散发到外部,导致对电池表面温度等外部信号的监测存在时效性差的问题。因此人们尝试直接监测电池内部温度、压力、应变和气体等信号的变化情况,实现及时预警电池热失控,增强锂离子电池在不同应用场景下的安全性。本文在理解热失控机制的基础上,概述了可以监测电池内部信号的方法。总结了锂离子电池在发生热失控时涉及的一系列放热反应,及在这些反应过程中电池内部温度、压力和气体等信号的变化情况。对于能够直接监测电池内部信号的技术,主要介绍了电化学阻抗分析和内置传感器监测,为以后优化监测方法提供参考信息。其中,将传感器植入到电池内部在实际应用中具有良好的前景。为了进一步提高锂离子电池系统的安全性,本文还对未来可能的研究方向进行了展望。

关键词: 锂离子电池, 热失控, 内部信号, 监测和预警

Abstract:

Lithium-ion batteries are extensively used in portable electronics, energy storage systems, and electric vehicles. However, with the increasing capacity of these batteries, the risk of thermal runaway and associated safety concerns have escalated. Traditional battery management systems primarily focus on monitoring surface temperature and terminal voltage to assess battery health. Yet, the multilayer structure and poor thermal conductivity of battery modules make it challenging to effectively monitor internal temperature and gas distribution, leading to delayed detection of critical signals such as surface temperature variations. Consequently, there is a growing emphasis on monitoring changes in internal temperature, pressure, strain, and gas signals to provide timely warnings of battery thermal runaway and enhance safety across various applications. This review offers a comprehensive examination of the mechanisms of thermal runaway in lithium-ion batteries and the techniques for monitoring internal battery signals. It highlights a series of exothermic reactions associated with thermal runaway, along with the resulting changes in internal temperature, pressure, and gas signals. Moreover, the review discusses monitoring techniques that directly assess internal battery signals, such as electrochemical impedance spectroscopy and embedded sensor monitoring, offering insights for the optimization of future monitoring methods. The practical applications and potential of embedded sensors within batteries are emphasized, along with the prospects for further enhancing the safety of lithium-ion battery systems.

Key words: lithium-ion battery, thermal runaway, internal battery signals, monitoring and early warning

中图分类号: