35 |
CHEN J, HAN K S, HENDERSON W A, et al. Restricting the solubility of polysulfides in Li-S batteries via electrolyte salt selection[J]. Advanced Energy Materials, 2016, 6(11): 1600160..
|
36 |
ZOU Q L, LU Y C. Solvent-dictated lithium sulfur redox reactions: An operando UV-vis spectroscopic study[J]. The Journal of Physical Chemistry Letters, 2016, 7(8): 1518-1525.
|
37 |
MU W Y, LIU X L, WEN Z, et al. Numerical simulation of the factors affecting the growth of lithium dendrites[J]. Journal of Energy Storage, 2019, 26: 100921.
|
38 |
ZHANG Y J, LIU S F, WANG X L, et al. Composite Li metal anode with vertical graphene host for high performance Li-S batteries[J]. Journal of Power Sources, 2018, 374: 205-210.
|
39 |
PU J, SHEN Z, ZHENG J, et al. Co3S4@sulfur nanotubes for enhanced lithium-sulfur battery performance[J]. Nano Energy, 2017, 37: 7-14.
|
40 |
NANDASIRI MANJULA I, CAMACHO FORERO LUIS E, SCHWARZ ASHLEIGH M, et al. in situ chemical imaging of solid-electrolyte interphase layer evolution in Li-S batteries[J]. Chemistry of Materials, 2017, 29(11): 4728-4737.
|
41 |
XIAO J, HU J Z, CHEN H H, et al. Following the transient reactions in lithium-sulfur batteries using an in situ nuclear magnetic resonance technique[J]. Nano Letters, 2015, 15(5): 3309-3316.
|
42 |
WANG H, SA N Y, HE M N, et al. In situ NMR observation of the temporal speciation of lithium sulfur batteries during electrochemical cycling[J]. The Journal of Physical Chemistry C, 2017, 121(11): 6011-6017.
|
1 |
LI G X, SUN J H, HOU W P, et al. Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium-sulfur batteries[J]. Nature Communications, 2016, 7: 10601.
|
2 |
GAO X, ZHENG X L, TSAO Y, et al. All-solid-state lithium-sulfur batteries enhanced by redox mediators[J]. Journal of the American Chemical Society, 2021, 143(43): 18188-18195.
|
3 |
JIN Z S, ZHAO M, LIN T N, et al. Ordered micro-mesoporous carbon spheres embedded with well-dispersed ultrafine Fe3C nanocrystals as cathode material for high-performance lithium-sulfur batteries[J]. Chemical Engineering Journal, 2020, 388: 124315.
|
4 |
CHEN R, LUO R, HUANG Y, et al. Advanced high energy density secondary batteries with multi-electron reaction materials[J]. Advanced Science, 2016, 3(10): 1600051.
|
5 |
DENG Z F, ZHANG Z A, LAI Y Q, et al. Electrochemical impedance spectroscopy study of a lithium/sulfur battery: Modeling and analysis of capacity fading[J]. Journal of the Electrochemical Society, 2013, 160(4): A553-A558.
|
6 |
KOH J Y, PARK M S, KIM E H, et al. Electrochemical reduction mechanism of sulfur particles electrically isolated from carbon cathodes of lithium-sulfur cells[J]. Journal of the Electrochemical Society, 2014, 161(14): A2117-A2120.
|
7 |
RISSE S, ANGIOLETTI-UBERTI S, DZUBIELLA J, et al. Capacity fading in lithium/sulfur batteries: A linear four-state model[J]. Journal of Power Sources, 2014, 267: 648-654.
|
8 |
SONG M K, CAIRNS E J, ZHANG Y G. Lithium/sulfur batteries with high specific energy: Old challenges and new opportunities[J]. Nanoscale, 2013, 5(6): 2186-2204.
|
9 |
HUANG L, LI J J, LIU B, et al. Electrode design for lithium-sulfur batteries: Problems and solutions[J]. Advanced Functional Materials, 2020, 30(22): 1910375.
|
10 |
CHEN W, QIAN T, XIONG J, et al. A new type of multifunctional polar binder: Toward practical application of high energy lithium sulfur batteries[J]. Advanced Materials, 2017, 29(12): 1605160.
|
11 |
FENG S, FU Z H, CHEN X, ZHANG Q, et al. A review on theoretical models for lithium-sulfur battery cathodes[J]. InfoMat, 2022, 4(3): e12304.
|
12 |
YEON J S, KO Y H, PARK T H, et al. Multidimensional hybrid architecture encapsulating cobalt oxide nanoparticles into carbon nanotube branched nitrogen-doped reduced graphene oxide networks for lithium-sulfur batteries[J]. Energy & Environmental Materials, 2022, 5(2): 555-564.
|
13 |
LIU J, XIAOA S, CHANG L, et al. Regulating the d band in WS2@NC hierarchical nanospheres for efficient lithium polysulfide conversion in lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2021, 30(5): 343-352.
|
14 |
ZHAO E, NIE K, YU X, et al. Advanced characterization techniques in promoting mechanism understanding for lithium–sulfur batteries[J]. Advanced Functional Materials, 2018, 28(38): 1707543.
|
15 |
REHMAN S, POPE M, TAO S W, et al. Evaluating the effectiveness of in situ characterization techniques in overcoming mechanistic limitations in lithium-sulfur batteries[J]. Energy & Environmental Science, 2022, 15(4): 1423-1460.
|
16 |
CUISINIER M, CABELGUEN P E, EVERS S, et al. Sulfur speciation in Li-S batteries determined by operando X-ray absorption spectroscopy[J]. The Journal of Physical Chemistry Letters, 2013, 4(19): 3227-3232.
|
17 |
WUJCIK K H, PASCAL T A, PEMMARAJU C D, et al. Characterization of polysulfide radicals present in an ether‐based electrolyte of a lithium-sulfur battery during initial discharge using in situ X-ray absorption spectroscopy experiments and first‐principles calculations[J]. Advanced Energy Materials, 2015, 5(16): 1500285.
|
18 |
SUN Y, SEH Z W, LI W, et al. In-operando optical imaging of temporal and spatial distribution of polysulfides in lithium-sulfur batteries[J]. Nano Energy, 2015: 579-586.
|
19 |
LANG S Y, SHI Y, GUO Y G, et al. Insight into the interfacial process and mechanism in lithium-sulfur batteries: An in situ AFM study[J]. Angewandte Chemie, 2016, 55(51): 15835-15839.
|
20 |
LANG S Y, SHI Y, GUO Y G, et al. High-temperature formation of a functional film at the cathode/electrolyte interface in lithium-sulfur batteries: An in situ AFM study[J]. Angewandte Chemie, 2017, 56(46): 14433-14437.
|
21 |
YIM T, PARK M S, YU J S, et al. Effect of chemical reactivity of polysulfide toward carbonate-based electrolyte on the electrochemical performance of Li-S batteries[J]. Electrochimica Acta, 2013, 107: 454-460.
|
22 |
LIU X, HUANG J Q, ZHANG Q, et al. Nanostructured metal oxides and sulfides for lithium-sulfur batteries[J]. Advanced Materials, 2017, 29(20): 1601759.
|
23 |
ZHU X, ZHANG F, ZHANG L, et al. A highly stretchable cross‐linked polyacrylamide hydrogel as an effective binder for silicon and sulfur electrodes toward durable lithium‐ion storage[J]. Advanced Functional Materials, 2018, 28(11): 1705015.
|
24 |
FANG R P, ZHAO S Y, SUN Z H, et al. More reliable lithium-sulfur batteries: Status, solutions and prospects[J]. Advanced Materials, 2017, 29(48): 1606823.
|
25 |
LIU R L, WEI Z Y, PENG L L, et al. Establishing reaction networks in the 16-electron sulfur reduction reaction[J]. Nature, 2024, 626(7997): 98-104.
|
26 |
KIM H, LEE J T, MAGASINSKI A, et al. in situ TEM observation of electrochemical lithiation of sulfur confined within inner cylindrical pores of carbon nanotubes[J]. Advanced Energy Materials, 2015, 5(24): 1501306.
|
27 |
WANG Z F, TANG Y F, ZHANG L Q, et al. in situ TEM observations of discharging/charging of solid-state lithium-sulfur batteries at high temperatures[J]. Small, 2020, 16(28): e2001899.
|
28 |
KAVCIC M, BUCAR K, PETRIC M, et al. Operando resonant inelastic X-ray scattering: An appropriate tool to characterize sulfur in Li-S batteries[J]. The Journal of Physical Chemistry C, 2016, 120(43): 24568-24576.
|
29 |
SAQIB N, OHLHAUSEN G M, PORTER J M. In operando infrared spectroscopy of lithium polysulfides using a novel spectro-electrochemical cell[J]. Journal of Power Sources, 2017, 364: 266-271.
|
30 |
HAGEN M, SCHIFFELS P, HAMMER M, et al. In-situ Raman investigation of polysulfide formation in Li-S cells[J]. Journal of the Electrochemical Society, 2013, 160(8): a1205-a1214.
|
31 |
DRVARIČ TALIAN S, JESCHKE S, VIZINTIN A, et al. Fluorinated ether based electrolyte for high-energy lithium-sulfur batteries: Li+ solvation role behind reduced polysulfide solubility[J]. Chemistry of Materials, 2017, 29(23): 10037-10044.
|
32 |
ZHAO Y, ZHOU T H, ASHIROV T, et al. Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries[J]. Nature Communications, 2022, 13(1): 2575.
|
33 |
BALOCH M, VIZINTIN A, CHELLAPPAN R K, et al. Application of gel polymer electrolytes based on ionic liquids in lithium-sulfur batteries[J]. Journal of The Electrochemical Society, 2016, 163(10): A2390.
|
34 |
LI W L, XING Y J, WU Y H, et al. Study the effect of ion-complex on the properties of composite gel polymer electrolyte based on Electrospun PVdF nanofibrous membrane[J]. Electrochimica Acta, 2015, 151: 289-296.
|