储能科学与技术 ›› 2024, Vol. 13 ›› Issue (1): 36-47.doi: 10.19799/j.cnki.2095-4239.2023.0327
• 高比能二次电池关键材料与先进表征专刊 • 上一篇 下一篇
贾铭勋1,2,3,4(), 吴桐1,2,3,4(), 杨道通1,2,3,4, 秦小茜1,2,3,4, 刘景海1,2,3,4, 段莉梅1,2,3,4()
收稿日期:
2023-05-09
修回日期:
2023-05-23
出版日期:
2024-01-05
发布日期:
2024-01-22
通讯作者:
吴桐,段莉梅
E-mail:584111659@qq.com;wutong932@163.com;duanlmxie@126.com
作者简介:
贾铭勋(1999—),男,硕士研究生,研究方向为锂硫电池电解液添加剂,E-mail:584111659@qq.com;
基金资助:
Mingxun JIA1,2,3,4(), Tong WU1,2,3,4(), Daotong YANG1,2,3,4, Xiaoxi QIN1,2,3,4, Jinghai LIU1,2,3,4, Limei DUAN1,2,3,4()
Received:
2023-05-09
Revised:
2023-05-23
Online:
2024-01-05
Published:
2024-01-22
Contact:
Tong WU, Limei DUAN
E-mail:584111659@qq.com;wutong932@163.com;duanlmxie@126.com
摘要:
锂硫电池作为一种新型清洁能源存储转化装置具有高理论比容量、环境友好等优点,是现如今储能领域中的重点研究对象。但电池充放电时氧化还原反应动力学缓慢及长链多硫化锂的穿梭效应影响电池循环寿命。电解液是锂硫电池的重要组成部分,在充放电过程中肩负着离子转移和电子传递的作用。近年来,锂硫电池多功能电解液添加剂的研究脱颖而出,在电解液中引入添加剂可实现催化多硫化锂转化反应、保护金属锂、调控界面等功能。本文通过对近期相关文献的探讨,综述了利用电解液添加剂提升电池充放电反应动力学和抑制多硫化物穿梭效应的策略,着重介绍了无机共盐、有机含硫、有机含氟、有机含硒/碲添加剂,重点分析了上述添加剂对多硫化物调控的作用机制。在探究电池内部的反应机理方面,介绍了多种具有实时性和精准性的原位表征仪器在锂硫电池中的应用。综合分析了锂硫电池电解液多功能添加剂的研究进展,针对多种类型添加剂的作用机制进行讨论;指出原位表征技术对揭示催化机理和设计功能添加剂的指导作用,并对锂硫电池电解液添加剂未来发展方向进行展望。
中图分类号:
贾铭勋, 吴桐, 杨道通, 秦小茜, 刘景海, 段莉梅. 锂硫电池电解液多功能添加剂:作用机制及先进表征[J]. 储能科学与技术, 2024, 13(1): 36-47.
Mingxun JIA, Tong WU, Daotong YANG, Xiaoxi QIN, Jinghai LIU, Limei DUAN. Electrolyte multifunctional additives of lithium-sulfur battery: Mechanism of action and advanced characterization[J]. Energy Storage Science and Technology, 2024, 13(1): 36-47.
1 | BAŞAR S, TOSUN B. Environmental Pollution Index and economic growth: Evidence from OECD countries[J]. Environmental Science and Pollution Research, 2021, 28(27): 36870-36879. |
2 | FRETZ S J, PAL U, GIRARD G M A, et al. Lithium sulfonate functionalization of carbon cathodes as a substitute for lithium nitrate in the electrolyte of lithium-sulfur batteries[J]. Advanced Functional Materials, 2020, 30(35): 2002485. |
3 | LI C C, GE W N, QI S Y, et al. Manipulating electrocatalytic polysulfide redox kinetics by 1D core-shell like composite for lithium-sulfur batteries[J]. Advanced Energy Materials, 2022, 12(16): 2103915. |
4 | WANG S Z, LIAO J X, YANG X F, et al. Designing a highly efficient polysulfide conversion catalyst with paramontroseite for high-performance and long-life lithium-sulfur batteries[J]. Nano Energy, 2019, 57: 230-240. |
5 | FENG L X, YU P, FU X W, et al. Regulating polysulfide diffusion and deposition via rational design of core-shell active materials in Li-S batteries[J]. ACS Nano, 2022, 16(5): 7982-7992. |
6 | YANG X F, LI X, ADAIR K, et al. Structural design of lithium-sulfur batteries: From fundamental research to practical application[J]. Electrochemical Energy Reviews, 2018, 1(3): 239-293. |
7 | CHEN Y, WANG T Y, TIAN H J, et al. Advances in lithium-sulfur batteries: From academic research to commercial viability[J]. Advanced Materials, 2021, 33(29): e2003666. |
8 | WANG Z Y, GE H L, LIU S, et al. High-entropy alloys to activate the sulfur cathode for lithium-sulfur batteries[J]. Energy & Environmental Materials, 2023, 6(3): doi: 10.1002/eem2.12358. |
9 | WANG B, WANG L, ZHANG B, et al. Niobium diboride nanoparticles accelerating polysulfide conversion and directing Li2S nucleation enabled high areal capacity lithium-sulfur batteries[J]. ACS Nano, 2022, 16(3): 4947-4960. |
10 | ZHANG H, ONO L K, TONG G Q, et al. Long-life lithium-sulfur batteries with high areal capacity based on coaxial CNTs@TiN-TiO2 sponge[J]. Nature Communications, 2021, 12: 4738. |
11 | XUE P, ZHU K P, GONG W B, et al. "one stone two birds" design for dual-functional TiO2-TiN heterostructures enabled dendrite-free and kinetics-enhanced lithium-sulfur batteries[J]. Advanced Energy Materials, 2022, 12(18): 2200308. |
12 | ZHANG C, ZHANG C, PAN J, et al.Surface strain-enhanced MoS2 as a high-performance cathode catalyst for lithium-sulfur batteries. eScience 2022, 2, 405-415. |
13 | XU J, XU L L, ZHANG Z L, et al. Heterostructure ZnSe-CoSe2 embedded with yolk-shell conductive dodecahedral as Two-in-one hosts for cathode and anode protection of Lithium-Sulfur full batteries[J]. Energy Storage Materials, 2022, 47: 223-234. |
14 | WU T, YE J T, LI T N, et al. Tetrathiafulvalene as a multifunctional electrolyte additive for simultaneous interface amelioration, electron conduction, and polysulfide redox regulation in lithium-sulfur batteries[J]. Journal of Power Sources, 2022, 536: 231482. |
15 | WU T, SUN G R, LU W, et al. A polypyrrole/black-TiO2/S double-shelled composite fixing polysulfides for lithium-sulfur batteries[J]. Electrochimica Acta, 2020, 353: 136529. |
16 | 马康, 高志浩, 骆林, 等. 锂硫电池隔膜在不同抑制"穿梭效应"策略中的研究进展[J]. 储能科学与技术, 2022, 11(11): 3521-3533. |
MA K, GAO Z H, LUO L, et al. Research progress on lithium-sulfur battery separators for different strategies to inhibit the "shuttle effect"[J]. Energy Storage Science and Technology, 2022, 11(11): 3521-3533. | |
17 | 姚琳, 周玲, 李世雄, 等. 层层自组装MoS2多晶片增强锂硫电池性能[J]. 储能科学与技术, 2019, 8(3): 523-531. |
YAO L, ZHOU L, LI S X, et al. Edge-rich MoS2 nanosheets for high performance self-supporting Li-S batteries[J]. Energy Storage Science and Technology, 2019, 8(3): 523-531. | |
18 | LIANG G M, WU J X, QIN X Y, et al. Ultrafine TiO2 decorated carbon nanofibers as multifunctional interlayer for high-performance lithium-sulfur battery[J]. ACS Applied Materials & Interfaces, 2016, 8(35): 23105-23113. |
19 | LI Z, ZHANG F, TANG L B, et al. High areal loading and long-life cycle stability of lithium-sulfur batteries achieved by a dual-function ZnS-modified separator[J]. Chemical Engineering Journal, 2020, 390: 124653. |
20 | LI G C, LI G R, YE S H, et al. A polyaniline-coated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries[J]. Advanced Energy Materials, 2012, 2(10): 1238-1245. |
21 | WANG F F, LI J, ZHAO J A, et al. Single-atom electrocatalysts for lithium sulfur batteries: Progress, opportunities, and challenges[J]. ACS Materials Letters, 2020, 2(11): 1450-1463. |
22 | ZHOU T, LIANG J N, YE S H, et al. Fundamental, application and opportunities of single atom catalysts for Li-S batteries[J]. Energy Storage Materials, 2023, 55: 322-355. |
23 | LI Z N, SAMI I, YANG J, et al. Lithiated metallic molybdenum disulfide nanosheets for high-performance lithium-sulfur batteries[J]. Nature Energy, 2023, 8(1): 84-93. |
24 | LUO C, LIANG X, SUN Y F, et al. An organic nickel salt-based electrolyte additive boosts homogeneous catalysis for lithium-sulfur batteries[J]. Energy Storage Materials, 2020, 33: 290-297. |
25 | CUISINIER M, -E CABELGUEN P, ADAMS B D, et al. Unique behaviour of nonsolvents for polysulphides in lithium-sulphur batteries[J]. Energy & Environmental Science, 2014, 7(8): 2697-2705. |
26 | YE Y F, SONG M K, XU Y, et al. Lithium nitrate: A double-edged sword in the rechargeable lithium-sulfur cell[J]. Energy Storage Materials, 2019, 16: 498-504. |
27 | JOZWIUK A, BERKES B B, WEIß T, et al. The critical role of lithium nitrate in the gas evolution of lithium-sulfur batteries[J]. Energy & Environmental Science, 2016, 9(8): 2603-2608. |
28 | ZHANG S S. A new finding on the role of LiNO3 in lithium-sulfur battery[J]. Journal of Power Sources, 2016, 322: 99-105. |
29 | LI J R, LIU S F, CUI Y L, et al. Potassium hexafluorophosphate additive enables stable lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(50): 56017-56026. |
30 | WU P, DONG M X, TAN J A, et al. Revamping lithium-sulfur batteries for high cell-level energy density by synergistic utilization of polysulfide additives and artificial solid-electrolyte interphase layers[J]. Advanced Materials, 2021, 33(48): 2104246. |
31 | WU H L, SHIN M, LIU Y M, et al. Thiol-based electrolyte additives for high-performance lithium-sulfur batteries[J]. Nano Energy, 2017, 32: 50-58. |
32 | XIANG Q A, SHI C Y, ZHANG X Y, et al. Thiuram vulcanization accelerators as polysulfide scavengers to suppress shuttle effects for high-performance lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(33): 29970-29977. |
33 | LIAN J, GUO W, FU Y Z. Isomeric organodithiol additives for improving interfacial chemistry in rechargeable Li-S batteries[J]. Journal of the American Chemical Society, 2021, 143(29): 11063-11071. |
34 | ZHANG W, MA F F, WU Q A, et al. Bifunctional fluorinated anthraquinone additive for improving kinetics and interfacial chemistry in rechargeable Li-S batteries[J]. ACS Applied Energy Materials, 2022, 5(12): 15719-15728. |
35 | HE L A, SHAO S Y, ZONG C X, et al. Electrode interface engineering in lithium-sulfur batteries enabled by a trifluoroacetamide-based electrolyte[J]. ACS Applied Materials & Interfaces, 2022, 14(28): 31814-31823. |
36 | LIU F Y, ZONG C X, HE L, et al. Improving the electrochemical performance of lithium-sulfur batteries by interface modification with a bifunctional electrolyte additive[J]. Chemical Engineering Journal, 2022, 443: 136489. |
37 | KANG X Y, JIN Z Q, PENG H Q, et al. The role of selenium vacancies functionalized mediator of bimetal (Co, Fe) selenide for high-energy-density lithium-sulfur batteries[J]. Journal of Colloid and Interface Science, 2023, 637: 161-172. |
38 | ZHAO M, CHEN X, LI X Y, et al. An organodiselenide comediator to facilitate sulfur redox kinetics in lithium-sulfur batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2021, 33(13): e2007298. |
39 | ZHANG W, MA F F, WU Q A, et al. Dual-functional organotelluride additive for highly efficient sulfur redox kinetics and lithium regulation in lithium-sulfur batteries[J]. Energy & Environmental Materials, 2023, 6(3): doi: 10.1002/eem2.12369. |
40 | LOWE M A, GAO J, ABRUÑA H D. Mechanistic insights into operational lithium-sulfur batteries by in situ X-ray diffraction and absorption spectroscopy[J]. RSC Advances, 2014, 4(35): 18347-18353. |
41 | CAÑAS N A, WOLF S, WAGNER N, et al. In-situ X-ray diffraction studies of lithium-sulfur batteries[J]. Journal of Power Sources, 2013, 226: 313-319. |
42 | CUISINIER M, CABELGUEN P E, EVERS S, et al. Sulfur speciation in Li-S batteries determined by operando X-ray absorption spectroscopy[J]. The Journal of Physical Chemistry Letters, 2013, 4(19): 3227-3232. |
43 | KIM H, LEE J T, MAGASINSKI A, et al. In situ TEM observation of electrochemical lithiation of sulfur confined within inner cylindrical pores of carbon nanotubes[J]. Advanced Energy Materials, 2015, 5(24): 1501306. |
44 | YANG Z Z, ZHU Z Y, MA J E, et al. Phase separation of Li2S/S at nanoscale during electrochemical lithiation of the solid-state lithium-sulfur battery using in situ TEM[J]. Advanced Energy Materials, 2016, 6(20): 1600806. |
45 | TAN G Q, XU R, XING Z Y, et al. Burning lithium in CS2 for high-performing compact Li2S-graphene nanocapsules for Li-S batteries[J]. Nature Energy, 2017, 2: 17090. |
46 | NELSON WEKER J, TONEY M F. Emerging in situ and operando nanoscale X-ray imaging techniques for energy storage materials[J]. Advanced Functional Materials, 2015, 25(11): 1622-1637. |
47 | LIN C N, CHEN W C, SONG Y F, et al. Understanding dynamics of polysulfide dissolution and re-deposition in working lithium-sulfur battery by in-operando transmission X-ray microscopy[J]. Journal of Power Sources, 2014, 263: 98-103. |
48 | LI Y J, FAN J M, ZHENG M S, et al. A novel synergistic composite with multi-functional effects for high-performance Li-S batteries[J]. Energy & Environmental Science, 2016, 9(6): 1998-2004. |
49 | LANG S Y, SHI Y, GUO Y G, et al. Insight into the interfacial process and mechanism in lithium-sulfur batteries: An in situ AFM study[J]. Angewandte Chemie International Edition, 2016, 55(51): 15835-15839. |
50 | MAHANKALI K, THANGAVEL N K, REDDY ARAVA L M. In situ electrochemical mapping of lithium-sulfur battery interfaces using AFM-SECM[J]. Nano Letters, 2019, 19(8): 5229-5236. |
51 | WATANABE H, UENO K, DOKKO K, et al. In situ impedance spectra analysis of lithium-sulfur battery using sulfolane-based super-concentrated electrolyte solution[J]. ECS Meeting Abstracts, 2021, (1): 31. |
52 | NELSON J, MISRA S, YANG Y A, et al. In operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries[J]. Journal of the American Chemical Society, 2012, 134(14): 6337-6343. |
53 | CONDER J, BOUCHET R, TRABESINGER S, et al. Direct observation of lithium polysulfides in lithium-sulfur batteries using operando X-ray diffraction[J]. Nature Energy, 2017, 2: 17069. |
54 | WANG D R, SHAH D B, MASLYN J A, et al. Rate constants of electrochemical reactions in a lithium-sulfur cell determined by operando X-ray absorption spectroscopy[J]. Journal of the Electrochemical Society, 2018, 165(14): A3487-A3495. |
55 | ZHANG L, LING M, FENG J, et al. The synergetic interaction between LiNO3 and lithium polysulfides for suppressing shuttle effect of lithium-sulfur batteries[J]. Energy Storage Materials, 2018, 11: 24-29. |
56 | ZHANG Y W, LUO Y T, FINCHER C, et al. In-situ measurements of stress evolution in composite sulfur cathodes[J]. Energy Storage Materials, 2019, 16: 491-497. |
57 | XU Z L, KIM S J, CHANG D, et al. Visualization of regulated nucleation and growth of lithium sulfides for high energy lithium sulfur batteries[J]. Energy & Environmental Science, 2019, 12(10): 3144-3155. |
58 | WANG H, SA N Y, HE M N, et al. In situ NMR observation of the temporal speciation of lithium sulfur batteries during electrochemical cycling[J]. The Journal of Physical Chemistry C, 2017, 121(11): 6011-6017. |
59 | WU H L, HUFF L A, GEWIRTH A A. In situ Raman spectroscopy of sulfur speciation in lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(3): 1709-1719. |
[1] | 许旭鹏, 许旭明, 陈虹艳, 梁雅儒, 雷维新, 马增胜, 陈国新, 柯培玲. 原位表征技术在锂硫电池机理研究中的应用[J]. 储能科学与技术, 2024, 13(4): 1239-1252. |
[2] | 李顺, 黄建国, 何桂金. 木质素基碳/硫纳米球复合材料作为高性能锂硫电池正极材料[J]. 储能科学与技术, 2024, 13(1): 270-278. |
[3] | 陈珊珊, 郑翔, 王若, 原铭蔓, 彭威, 鲁博明, 张光照, 王朝阳, 王军, 邓永红. 锂离子电池硅基负极电解液添加剂研究进展:挑战与展望[J]. 储能科学与技术, 2024, 13(1): 279-292. |
[4] | 张永辉, 傅杰, 李先锋, 张长昆. 原位表征技术在水系有机液流电池中的研究进展[J]. 储能科学与技术, 2023, 12(9): 2971-2984. |
[5] | 杨殷晨, 任山令, 杨志红, 王允辉. 二维硼锑薄膜作为锂硫电池锚定材料的第一性原理研究[J]. 储能科学与技术, 2023, 12(9): 2760-2766. |
[6] | 时文超, 刘宇, 张博冕, 李琪, 韩春华, 麦立强. 电解液添加剂稳定水系电池锌负极界面的研究进展[J]. 储能科学与技术, 2023, 12(5): 1589-1603. |
[7] | 谭超, 王超. 功能化氧化石墨烯作为锂硫电池正极硫载体的性能研究[J]. 储能科学与技术, 2023, 12(4): 1025-1033. |
[8] | 张顺, 曾芳磊, 李宁, 袁宁一. 高阻燃硫正极的制备及其性能[J]. 储能科学与技术, 2023, 12(4): 1018-1024. |
[9] | 沈李园, 张桂鑫, 马兆玲. O-NiCo2S4/CNT复合材料对多硫化锂催化转化性能研究[J]. 储能科学与技术, 2023, 12(11): 3318-3329. |
[10] | 孙玉琦, 魏凤, 周洪, 周超峰. 专利视域下全球锂硫电池技术竞争态势分析[J]. 储能科学与技术, 2022, 11(5): 1657-1666. |
[11] | 魏超超, 余创, 吴仲楷, 彭林峰, 程时杰, 谢佳. Li3PS4 固态电解质的研究进展[J]. 储能科学与技术, 2022, 11(5): 1368-1382. |
[12] | 吕思奇, 李娜, 陈浩森, 焦树强, 宋维力. 电池电极过程可视化与定量化技术的研究进展[J]. 储能科学与技术, 2022, 11(3): 795-817. |
[13] | 王小飞, 蓝大为, 张道明, 薛浩亮, 周思飞, 刘闯, 李骏, 王振东. 基于锂掺杂分子筛改性隔膜的高性能锂硫电池[J]. 储能科学与技术, 2022, 11(11): 3447-3454. |
[14] | 孙春水, 郭德才, 陈剑. 碳化木耳多孔碳的制备及在硫正极中的应用[J]. 储能科学与技术, 2021, 10(6): 2060-2068. |
[15] | 杨家豪, 施兆平, 王意波, 葛君杰, 刘长鹏, 邢巍. 用于酸性析氧反应研究的原位表征技术[J]. 储能科学与技术, 2021, 10(6): 1877-1890. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||