储能科学与技术 ›› 2024, Vol. 13 ›› Issue (1): 24-35.doi: 10.19799/j.cnki.2095-4239.2023.0581
• 高比能二次电池关键材料与先进表征专刊 • 上一篇 下一篇
收稿日期:
2023-08-29
修回日期:
2023-09-07
出版日期:
2024-01-05
发布日期:
2024-01-22
通讯作者:
金成滨,盛欧微
E-mail:jincb@cjlu.edu.cn;owsheng@hdu.edu.cn
作者简介:
金成滨(1991—),男,博士,研究员,研究方向为金属锂电池材料与技术,E-mail:jincb@cjlu.edu.cn;
基金资助:
Chengbin JIN1(), Yiyu HUANG1, Xinyong TAO2, Ouwei SHENG3()
Received:
2023-08-29
Revised:
2023-09-07
Online:
2024-01-05
Published:
2024-01-22
Contact:
Chengbin JIN, Ouwei SHENG
E-mail:jincb@cjlu.edu.cn;owsheng@hdu.edu.cn
摘要:
锂作为一种高容量负极,是构筑高比能金属锂电池的关键材料。然而金属锂电池实际应用仍面临诸多挑战,尤其是死锂问题,导致电池循环寿命和安全性严重下降。本文从死锂的形成机制、表征技术和解决策略三个方面开展论述。死锂主要来源于不完全的脱锂过程,以及锂的化学/电化学腐蚀,后者在电池充放电以及日历老化过程中都会发生。结合作者及合作者近期的相关研究报道,本文讨论了冷冻电镜、原位光学显微镜/拉曼光谱、三电极电化学技术等在死锂微观结构组成及其形成演变机制方面的应用。概括了通过设计骨架支撑锂的体相结构,引入保护层稳定界面,配置高性能电解液/固态电解质等死锂抑制型策略,减少死锂的产生和积累。此外,分析了解决死锂问题的激活策略,利用氧化还原对实现死锂的转化、迁移、存储和再利用。由于锂腐蚀、界面溶解、内电场作用等,实际电池体系中死锂的结构组成、空间分布等都存在复杂的动态变化,仍需开展大量研究剖析死锂的动态演变机制,提出根治死锂问题的科学思路。
中图分类号:
金成滨, 黄益钰, 陶新永, 盛欧微. 金属锂电池死锂形成机制及解决策略[J]. 储能科学与技术, 2024, 13(1): 24-35.
Chengbin JIN, Yiyu HUANG, Xinyong TAO, Ouwei SHENG. Formation mechanism of dead lithium in lithium metal batteries and its solutions[J]. Energy Storage Science and Technology, 2024, 13(1): 24-35.
1 | LI M, LU J, CHEN Z W, et al. 30 years of lithium-ion batteries[J]. Advanced Materials, 2018, 30(33): 1800561. |
2 | ALBERTUS P, BABINEC S, LITZELMAN S, et al. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries[J]. Nature Energy, 2018, 3(1): 16-21. |
3 | DUFFNER F, KRONEMEYER N, TÜBKE J, et al. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure[J]. Nature Energy, 2021, 6(2): 123-134. |
4 | MANTHIRAM A. A reflection on lithium-ion battery cathode chemistry[J]. Nature Communications, 2020, 11: 1550. |
5 | GUO Y P, LI H Q, ZHAI T Y. Reviving lithium-metal anodes for next-generation high-energy batteries[J]. Advanced Materials, 2017, 29(29): 1700007. |
6 | LIN D C, LIU Y Y, CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12(3): 194-206. |
7 | ZHU C, FUCHS T, WEBER S A L, et al. Understanding the evolution of lithium dendrites at Li6.25Al0.25La3Zr2O12 grain boundaries via operando microscopy techniques[J]. Nature Communications, 2023, 14: 1300. |
8 | ZHANG X Y, WANG A X, LIU X J, et al. Dendrites in lithium metal anodes: Suppression, regulation, and elimination[J]. Accounts of Chemical Research, 2019, 52(11): 3223-3232. |
9 | XIN X, ITO K, DUTTA A, et al. Dendrite-free epitaxial growth of lithium metal during charging in Li-O2 batteries[J]. Angewandte Chemie International Edition, 2018, 57(40): 13206-13210. |
10 | PELED E, MENKIN S. Review—SEI: Past, present and future[J]. Journal of the Electrochemical Society, 2017, 164(7): A1703-A1719. |
11 | LI N W, SHI Y, YIN Y X, et al. A flexible solid electrolyte interphase layer for long-life lithium metal anodes[J]. Angewandte Chemie International Edition, 2018, 57(6): 1505-1509. |
12 | LI S M, HUANG J L, CUI Y, et al. A robust all-organic protective layer towards ultrahigh-rate and large-capacity Li metal anodes[J]. Nature Nanotechnology, 2022, 17(6): 613-621. |
13 | MARKEVICH E, SALITRA G, CHESNEAU F, et al. Very stable lithium metal stripping-plating at a high rate and high areal capacity in fluoroethylene carbonate-based organic electrolyte solution[J]. ACS Energy Letters, 2017, 2(6): 1321-1326. |
14 | WANG S H, YIN Y X, ZUO T T, et al. Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels[J]. Advanced Materials, 2017, 29(40): 1703729. |
15 | ZHANG D, WANG S A, LI B, et al. Horizontal growth of lithium on parallelly aligned MXene layers towards dendrite-free metallic lithium anodes[J]. Advanced Materials, 2019, 31(33): 1901820. |
16 | GUNNARSDÓTTIR A B, AMANCHUKWU C V, MENKIN S, et al. Noninvasive in situ NMR study of "dead lithium" formation and lithium corrosion in full-cell lithium metal batteries[J]. Journal of the American Chemical Society, 2020, 142(49): 20814-20827. |
17 | CHEN K H, WOOD K N, KAZYAK E, et al. Dead lithium: Mass transport effects on voltage, capacity, and failure of lithium metal anodes[J]. Journal of Materials Chemistry A, 2017, 5(23): 11671-11681. |
18 | WANG H S, LI Y Z, LI Y B, et al. Wrinkled graphene cages as hosts for high-capacity Li metal anodes shown by cryogenic electron microscopy[J]. Nano Letters, 2019, 19(2): 1326-1335. |
19 | RYOU M H, KIM S H, KIM S W, et al. A microgrid-patterned silicon electrode as an electroactive lithium host[J]. Energy & Environmental Science, 2022, 15(6): 2581-2590. |
20 | SHI P, LI T, ZHANG R, et al. Lithiophilic LiC6 layers on carbon hosts enabling stable Li metal anode in working batteries[J]. Advanced Materials, 2019, 31(8): 1807131. |
21 | CHI S S, LIU Y C, SONG W L, et al. Batteries: Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode[J]. Advanced Functional Materials, 2017, 27(24): 1700348. |
22 | LI G X, LIU Z, HUANG Q Q, et al. Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects[J]. Nature Energy, 2018, 3(12): 1076-1083. |
23 | WU C, HUANG H F, LU W Y, et al. Mg doped Li-LiB alloy with in situ formed lithiophilic LiB skeleton for lithium metal batteries[J]. Advanced Science, 2020, 7(6): 1902643. |
24 | KONG L L, WANG L, NI Z C, et al. Lithium-magnesium alloy as a stable anode for lithium-sulfur battery[J]. Advanced Functional Materials, 2019, 29(13): 1808756. |
25 | PARK C M, KIM J H, KIM H, et al. Li-alloy based anode materials for Li secondary batteries[J]. Chemical Society Reviews, 2010, 39(8): 3115-3141. |
26 | ZHANG X L, WANG W K, WANG A B, et al. Improved cycle stability and high security of Li-B alloy anode for lithiumâ "sulfur battery"[J]. Journal of Materials Chemistry A, 2014, 2(30): 11660-11665. |
27 | KRAUSKOPF T, MOGWITZ B, ROSENBACH C, et al. Diffusion limitation of lithium metal and Li-Mg alloy anodes on LLZO type solid electrolytes as a function of temperature and pressure[J]. Advanced Energy Materials, 2019, 9(44): 1902568. |
28 | ZHAO J, ZHOU G M, YAN K, et al. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes[J]. Nature Nanotechnology, 2017, 12(10): 993-999. |
29 | KIM M H, WI T U, SEO J, et al. Design principles for fluorinated interphase evolution via conversion-type alloying processes for anticorrosive lithium metal anodes[J]. Nano Letters, 2023, 23(8): 3582-3591. |
30 | JI X A, HOU S, WANG P F, et al. Solid-state electrolyte design for lithium dendrite suppression[J]. Advanced Materials, 2020, 32(46): 2002741. |
31 | ZHANG X E, WANG S, XUE C J, et al. Self-suppression of lithium dendrite in all-solid-state lithium metal batteries with poly(vinylidene difluoride)-based solid electrolytes[J]. Advanced Materials, 2019, 31(11): 1806082. |
32 | CHENG X B, ZHAO C Z, YAO Y X, et al. Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes[J]. Chem, 2019, 5(1): 74-96. |
33 | YANG C P, FU K, ZHANG Y, et al. Protected lithium-metal anodes in batteries: From liquid to solid[J]. Advanced Materials, 2017, 29(36): 1701169. |
34 | LIU M, ZHANG S N, VAN ECK E R H, et al. Improving Li-ion interfacial transport in hybrid solid electrolytes[J]. Nature Nanotechnology, 2022, 17(9): 959-967. |
35 | HOBOLD G M, KIM K H, GALLANT B M. Beneficial vs. inhibiting passivation by the native lithium solid electrolyte interphase revealed by electrochemical Li+ exchange[J]. Energy & Environmental Science, 2023, 16(5): 2247-2261. |
36 | KANG D M, XIAO M Y, LEMMON J P. Artificial solid-electrolyte interphase for lithium metal batteries[J]. Batteries & Supercaps, 2021, 4(3): 445-455. |
37 | XU R, XIAO Y, ZHANG R, et al. Lithium-metal anodes: Dual-phase single-ion pathway interfaces for robust lithium metal in working batteries[J]. Advanced Materials, 2019, 31(19): 1808392. |
38 | TAN J A, MATZ J, DONG P, et al. A growing appreciation for the role of LiF in the solid electrolyte interphase[J]. Advanced Energy Materials, 2021, 11(16): 2100046. |
39 | TAN Y H, LU G X, ZHENG J H, et al. Lithium fluoride in electrolyte for stable and safe lithium-metal batteries[J]. Advanced Materials, 2021, 33(42): 2102134. |
40 | LU B Y, LI W K, CHENG D Y, et al. Suppressing chemical corrosions of lithium metal anodes[J]. Advanced Energy Materials, 2022, 12(48): 2202012. |
41 | HE X, BRESSER D, PASSERINI S, et al. The passivity of lithium electrodes in liquid electrolytes for secondary batteries[J]. Nature Reviews Materials, 2021, 6(11): 1036-1052. |
42 | FRANKEL G S. Pitting corrosion of metals: A review of the critical factors[J]. Journal of the Electrochemical Society, 1998, 145(6): 2186-2198. |
43 | SAYAVONG P, ZHANG W B, OYAKHIRE S T, et al. Dissolution of the solid electrolyte interphase and its effects on lithium metal anode cyclability[J]. Journal of the American Chemical Society, 2023, 145(22): 12342-12350. |
44 | DING J F, XU R, XIAO Y, et al. Dynamic galvanic corrosion of working lithium metal anode under practical conditions[J]. Advanced Energy Materials, 2023, 13(21): 2204305. |
45 | LIN D C, LIU Y Y, LI Y B, et al. Fast galvanic lithium corrosion involving a Kirkendall-type mechanism[J]. Nature Chemistry, 2019, 11(4): 382-389. |
46 | KOLESNIKOV A, KOLEK M, DOHMANN J F, et al. Galvanic corrosion of lithium-powder-based electrodes[J]. Advanced Energy Materials, 2020, 10(15): 2000017. |
47 | FANG C C, LU B Y, PAWAR G, et al. Pressure-tailored lithium deposition and dissolution in lithium metal batteries[J]. Nature Energy, 2021, 6(10): 987-994. |
48 | FANG C C, LI J X, ZHANG M H, et al. Quantifying inactive lithium in lithium metal batteries[J]. Nature, 2019, 572(7770): 511-515. |
49 | CHEN Y W, LI M H, LIU Y E, et al. Origin of dendrite-free lithium deposition in concentrated electrolytes[J]. Nature Communications, 2023, 14: 2655. |
50 | LI Y Z, LI Y B, PEI A, et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy[J]. Science, 2017, 358(6362): 506-510. |
51 | HUANG W, WANG H S, BOYLE D T, et al. Resolving nanoscopic and mesoscopic heterogeneity of fluorinated species in battery solid-electrolyte interphases by cryogenic electron microscopy[J]. ACS Energy Letters, 2020, 5(4): 1128-1135. |
52 | LIU Y Y, LIN D C, LI Y Z, et al. Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode[J]. Nature Communications, 2018, 9: 3656. |
53 | JIN C B, NAI J W, SHENG O W, et al. Biomass-based materials for green lithium secondary batteries[J]. Energy & Environmental Science, 2021, 14(3): 1326-1379. |
54 | JIN C B, LIU T F, SHENG O W, et al. Rejuvenating dead lithium supply in lithium metal anodes by iodine redox[J]. Nature Energy, 2021, 6(4): 378-387. |
55 | LIU F, XU R, WU Y C, et al. Dynamic spatial progression of isolated lithium during battery operations[J]. Nature, 2021, 600(7890): 659-663. |
56 | ZHANG Z W, LI Y Z, XU R, et al. Capturing the swelling of solid-electrolyte interphase in lithium metal batteries[J]. Science, 2022, 375(6576): 66-70. |
57 | JIN C B, YAO N, XIAO Y, et al. Taming solvent-solute interaction accelerates interfacial kinetics in low-temperature lithium-metal batteries[J]. Advanced Materials, 2023, 35(3): 2208340. |
58 | XIAO Y, XU R, YAN C, et al. A toolbox of reference electrodes for lithium batteries[J]. Advanced Functional Materials, 2022, 32(13): 2108449. |
59 | SEOK J, GANNETT C N, YU S H, et al. Understanding the impacts of Li stripping overpotentials at the counter electrode by three-electrode coin cell measurements[J]. Analytical Chemistry, 2021, 93(46): 15459-15467. |
60 | SHI P, HOU L P, JIN C B, et al. A successive conversion-deintercalation delithiation mechanism for practical composite lithium anodes[J]. Journal of the American Chemical Society, 2022, 144(1): 212-218. |
61 | ZHU R J, YANG H J, FADILLAH L, et al. A lithiophilic carbon scroll as a Li metal host with low tortuosity design and "Dead Li" self-cleaning capability[J]. Journal of Materials Chemistry A, 2021, 9(22): 13332-13343. |
62 | SHEN X, ZHANG R, SHI P, et al. The dead lithium formation under mechano-electrochemical coupling in lithium metal batteries[J]. Fundamental Research, 2022 |
63 | NING Z Y, LI G C, MELVIN D L R, et al. Dendrite initiation and propagation in lithium metal solid-state batteries[J]. Nature, 2023, 618(7964): 287-293. |
64 | SHEN X, ZHANG R, SHI P, et al. How does external pressure shape Li dendrites in Li metal batteries?[J]. Advanced Energy Materials, 2021, 11(10): 2003416. |
65 | ZHANG X, WANG Q J, HARRISON K L, et al. Rethinking how external pressure can suppress dendrites in lithium metal batteries[J]. Journal of the Electrochemical Society, 2019, 166(15): A3639-A3652. |
66 | HUANG Z J, LAI J C, LIAO S L, et al. A salt-philic, solvent-phobic interfacial coating design for lithium metal electrodes[J]. Nature Energy, 2023, 8(6): 577-585. |
67 | ZHAO Y, AMIRMALEKI M, SUN Q, et al. Natural SEI-inspired dual-protective layers via atomic/molecular layer deposition for long-life metallic lithium anode[J]. Matter, 2019, 1(5): 1215-1231. |
68 | JO H, SONG D, JEONG Y C, et al. Study on dead-Li suppression mechanism of Li-hosting vapor-grown-carbon-nanofiber-based protective layer for Li metal anodes[J]. Journal of Power Sources, 2019, 409: 132-138. |
69 | ZHANG E L, TIAN H J, LI M, et al. Dendrite inhibited and dead lithium activated dual-function additive for lithium metal batteries[J]. Chemical Communications, 2023, 59(73): 10996-10999. |
70 | CHEN J E, CHENG Z X, LIAO Y Q, et al. Selection of redox mediators for reactivating dead Li in lithium metal batteries[J]. Advanced Energy Materials, 2022, 12(40): 2201800. |
71 | CHEN J E, HE B, CHENG Z X, et al. Reactivating dead Li by shuttle effect for high-performance anode-free Li metal batteries[J]. Journal of the Electrochemical Society, 2021, 168(12): 120535. |
72 | ZHANG Y H, LIU J E, LI Y F, et al. Reactivating the dead lithium by redox shuttle to promote the efficient utilization of lithium for anode free lithium metal batteries[J]. Advanced Functional Materials, 2023, 33(40): 2301332. |
73 | JIN C B, SHENG O W, LUO J M, et al. 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries[J]. Nano Energy, 2017, 37: 177-186. |
74 | WANG X S, PAN Z H, WU Y, et al. Reducing lithium deposition overpotential with silver nanocrystals anchored on graphene aerogel[J]. Nanoscale, 2018, 10(35): 16562-16567. |
75 | JIN C, SHENG O, CHEN M, et al. Armed lithium metal anodes with functional skeletons[J]. Materials Today Nano, 2021, 13: 100103. |
76 | JIN C B, SHENG O W, LU Y, et al. Metal oxide nanoparticles induced step-edge nucleation of stable Li metal anode working under an ultrahigh current density of 15 mA cm-2[J]. Nano Energy, 2018, 45: 203-209. |
77 | JIN C B, SHENG O W, ZHANG W K, et al. Sustainable, inexpensive, naturally multi-functionalized biomass carbon for both Li metal anode and sulfur cathode[J]. Energy Storage Materials, 2018, 15: 218-225. |
78 | SHI P, LIU Z Y, ZHANG X Q, et al. Polar interaction of polymer host-solvent enables stable solid electrolyte interphase in composite lithium metal anodes[J]. Journal of Energy Chemistry, 2022, 64: 172-178. |
79 | ZHAN Y X, LIU Z Y, GENG Y Y, et al. Fluorinating solid electrolyte interphase by regulating polymer-solvent interaction in lithium metal batteries[J]. Energy Storage Materials, 2023, 60: 102799. |
80 | JIN Y, LE P M L, GAO P Y, et al. Low-solvation electrolytes for high-voltage sodium-ion batteries[J]. Nature Energy, 2022, 7(8): 718-725. |
81 | BOYLE D T, HUANG W, WANG H S, et al. Corrosion of lithium metal anodes during calendar ageing and its microscopic origins[J]. Nature Energy, 2021, 6(5): 487-494. |
82 | ZHANG X Y, WANG A X, LV R J, et al. A corrosion-resistant current collector for lithium metal anodes[J]. Energy Storage Materials, 2019, 18: 199-204. |
83 | WANG Y Y, ZHANG X Q, ZHOU M Y, et al. Mechanism, quantitative characterization, and inhibition of corrosion in lithium batteries[J]. Nano Research Energy, 2023, 2: e9120046. |
84 | HE X F, LIU X A, HAN Q, et al. A liquid/liquid electrolyte interface that inhibits corrosion and dendrite growth of lithium in lithium-metal batteries[J]. Angewandte Chemie International Edition, 2020, 59(16): 6397-6405. |
85 | LUO J, FANG C C, WU N L. Anodes: High polarity poly(vinylidene difluoride) thin coating for dendrite-free and high-performance lithium metal anodes[J]. Advanced Energy Materials, 2018, 8(2): 1701482. |
86 | LOPEZ J, PEI A, OH J Y, et al. Effects of polymer coatings on electrodeposited lithium metal[J]. Journal of the American Chemical Society, 2018, 140(37): 11735-11744. |
87 | ZHENG G Y, WANG C, PEI A, et al. High-performance lithium metal negative electrode with a soft and flowable polymer coating[J]. ACS Energy Letters, 2016, 1(6): 1247-1255. |
88 | WANG D D, LIU H X, LIU F, et al. Phase-separation-induced porous lithiophilic polymer coating for high-efficiency lithium metal batteries[J]. Nano Letters, 2021, 21(11): 4757-4764. |
89 | HUANG Z J, CHOUDHURY S, PAUL N, et al. Effects of polymer coating mechanics at solid-electrolyte interphase for stabilizing lithium metal anodes[J]. Advanced Energy Materials, 2022, 12(5): 2103187. |
90 | LU G X, NAI J W, YUAN H D, et al. In-situ electrodeposition of nanostructured carbon strengthened interface for stabilizing lithium metal anode[J]. ACS Nano, 2022, 16(6): 9883-9893. |
91 | LIU F, XIAO Q F, WU H B, et al. Fabrication of hybrid silicate coatings by a simple vapor deposition method for lithium metal anodes[J]. Advanced Energy Materials, 2018, 8(6): 1701744. |
92 | JU Z J, JIN C B, YUAN H D, et al. A fast-ion conducting interface enabled by aluminum silicate fibers for stable Li metal batteries[J]. Chemical Engineering Journal, 2021, 408: 128016. |
93 | JU Z J, NAI J W, WANG Y, et al. Biomacromolecules enabled dendrite-free lithium metal battery and its origin revealed by cryo-electron microscopy[J]. Nature Communications, 2020, 11: 488. |
94 | JU Z J, JIN C B, CAI X H, et al. Cationic interfacial layer toward a LiF-enriched interphase for stable Li metal batteries[J]. ACS Energy Letters, 2023, 8(1): 486-493. |
95 | SHENG O W, ZHENG J H, JU Z J, et al. In situ construction of a LiF-enriched interface for stable all-solid-state batteries and its origin revealed by cryo-TEM[J]. Advanced Materials, 2020, 32(34): e2000223. |
96 | LU Y, LU Y T, JIN C B, et al. Natural wood structure inspires practical lithium-metal batteries[J]. ACS Energy Letters, 2021, 6(6): 2103-2110. |
97 | JIN C B, ZHANG X Q, SHENG O W, et al. Reclaiming inactive lithium with a triiodide/iodide redox couple for practical lithium metal batteries[J]. Angewandte Chemie International Edition, 2021, 60(42): 22990-22995. |
98 | SHENG O W, HU H L, LIU T F, et al. Interfacial and ionic modulation of poly (ethylene oxide) electrolyte via localized iodization to enable dendrite-free lithium metal batteries[J]. Advanced Functional Materials, 2022, 32(14): 2111026. |
99 | WANG H N, HOU T Y, CHENG H, et al. Bifunctional LiI additive for poly(ethylene oxide) electrolyte with high ionic conductivity and stable interfacial chemistry[J]. Journal of Energy Chemistry, 2022, 71: 218-224. |
100 | LIN R Q, HE Y B, WANG C Y, et al. Characterization of the structure and chemistry of the solid-electrolyte interface by cryo-EM leads to high-performance solid-state Li-metal batteries[J]. Nature Nanotechnology, 2022, 17(7): 768-776. |
101 | SUN H M, LIU Q N, CHEN J Z, et al. In situ visualization of lithium penetration through solid electrolyte and dead lithium dynamics in solid-state lithium metal batteries[J]. ACS Nano, 2021, 15(12): 19070-19079. |
102 | SHENG O W, JIN C B, YANG T, et al. Designing biomass-integrated solid polymer electrolytes for safe and energy-dense lithium metal batteries[J]. Energy & Environmental Science, 2023, 16(7): 2804-2824. |
103 | SHENG O W, JIN C B, DING X F, et al. A decade of progress on solid-state electrolytes for secondary batteries: Advances and contributions[J]. Advanced Functional Materials, 2021, 31(27): 2100891. |
104 | LIU H, CHENG X B, HUANG J Q, et al. Controlling dendrite growth in solid-state electrolytes[J]. ACS Energy Letters, 2020, 5(3): 833-843. |
105 | RAJ V, VENTURI V, KANKANALLU V R, et al. Direct correlation between void formation and lithium dendrite growth in solid-state electrolytes with interlayers[J]. Nature Materials, 2022, 21(9): 1050-1056. |
106 | SHENG O W, JIN C B, CHEN M, et al. Platinum nano-interlayer enhanced interface for stable all-solid-state batteries observed via cryo-transmission electron microscopy[J]. Journal of Materials Chemistry A, 2020, 8(27): 13541-13547. |
107 | SHENG O W, JIN C B, JU Z J, et al. Stabilizing Li4SnS4 electrolyte from interface to bulk phase with a gradient lithium iodide/polymer layer in lithium metal batteries[J]. Nano Letters, 2022, 22(20): 8346-8354. |
[1] | 许旭鹏, 许旭明, 陈虹艳, 梁雅儒, 雷维新, 马增胜, 陈国新, 柯培玲. 原位表征技术在锂硫电池机理研究中的应用[J]. 储能科学与技术, 2024, 13(4): 1239-1252. |
[2] | 贾铭勋, 吴桐, 杨道通, 秦小茜, 刘景海, 段莉梅. 锂硫电池电解液多功能添加剂:作用机制及先进表征[J]. 储能科学与技术, 2024, 13(1): 36-47. |
[3] | 张永辉, 傅杰, 李先锋, 张长昆. 原位表征技术在水系有机液流电池中的研究进展[J]. 储能科学与技术, 2023, 12(9): 2971-2984. |
[4] | 徐冲, 徐宁, 蒋志敏, 李中凯, 胡洋, 严红, 马国强. 锂离子电池产气机制及基于电解液的抑制策略[J]. 储能科学与技术, 2023, 12(7): 2119-2133. |
[5] | 安汉文, 莫生凯, 李梦璐, 王家钧. 同步辐射多模态成像技术在储能电池领域的研究进展[J]. 储能科学与技术, 2022, 11(3): 834-851. |
[6] | 吕思奇, 李娜, 陈浩森, 焦树强, 宋维力. 电池电极过程可视化与定量化技术的研究进展[J]. 储能科学与技术, 2022, 11(3): 795-817. |
[7] | 刘迪, 张甜甜, 彭宇维, 唐晓梅, 王丹, 毛承雄. 压缩空气储能系统释能环节轴系建模与振荡分析[J]. 储能科学与技术, 2022, 11(2): 563-572. |
[8] | 杨家豪, 施兆平, 王意波, 葛君杰, 刘长鹏, 邢巍. 用于酸性析氧反应研究的原位表征技术[J]. 储能科学与技术, 2021, 10(6): 1877-1890. |
[9] | 孙兴伟, 王龙龙, 姜丰, 马君, 周新红, 崔光磊. 固态聚合物锂电池失效机制及其表征技术[J]. 储能科学与技术, 2019, 8(6): 1024-1032. |
[10] | 李宁宁, 师长立, 何俊强, 张国伟. 超级电容器储能逆变器控制策略研究[J]. 储能科学与技术, 2019, 8(4): 696-701. |
[11] | 朱建宇, 冯捷敏, 郭战胜. 锂离子电池电极中锂枝晶的实时原位观测[J]. 储能科学与技术, 2015, 4(1): 66-71. |
[12] | 李文俊, 褚赓, 彭佳悦, 郑浩, 李西阳, 郑杰允, 李泓. 锂离子电池基础科学问题(Ⅻ)----表征方法[J]. 储能科学与技术, 2014, 3(6): 642-667. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||