储能科学与技术 ›› 2024, Vol. 13 ›› Issue (1): 24-35.doi: 10.19799/j.cnki.2095-4239.2023.0581

• 高比能二次电池关键材料与先进表征专刊 • 上一篇    下一篇

金属锂电池死锂形成机制及解决策略

金成滨1(), 黄益钰1, 陶新永2, 盛欧微3()   

  1. 1.中国计量大学,浙江 杭州 310018
    2.浙江工业大学,浙江 杭州 310014
    3.杭州电子科技大学,浙江 杭州 310018
  • 收稿日期:2023-08-29 修回日期:2023-09-07 出版日期:2024-01-05 发布日期:2024-01-22
  • 通讯作者: 金成滨,盛欧微 E-mail:jincb@cjlu.edu.cn;owsheng@hdu.edu.cn
  • 作者简介:金成滨(1991—),男,博士,研究员,研究方向为金属锂电池材料与技术,E-mail:jincb@cjlu.edu.cn
  • 基金资助:
    国家自然科学基金(52103342)

Formation mechanism of dead lithium in lithium metal batteries and its solutions

Chengbin JIN1(), Yiyu HUANG1, Xinyong TAO2, Ouwei SHENG3()   

  1. 1.China Jiliang University, Hangzhou 310018, Zhejiang, China
    2.Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
    3.Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China
  • Received:2023-08-29 Revised:2023-09-07 Online:2024-01-05 Published:2024-01-22
  • Contact: Chengbin JIN, Ouwei SHENG E-mail:jincb@cjlu.edu.cn;owsheng@hdu.edu.cn

摘要:

锂作为一种高容量负极,是构筑高比能金属锂电池的关键材料。然而金属锂电池实际应用仍面临诸多挑战,尤其是死锂问题,导致电池循环寿命和安全性严重下降。本文从死锂的形成机制、表征技术和解决策略三个方面开展论述。死锂主要来源于不完全的脱锂过程,以及锂的化学/电化学腐蚀,后者在电池充放电以及日历老化过程中都会发生。结合作者及合作者近期的相关研究报道,本文讨论了冷冻电镜、原位光学显微镜/拉曼光谱、三电极电化学技术等在死锂微观结构组成及其形成演变机制方面的应用。概括了通过设计骨架支撑锂的体相结构,引入保护层稳定界面,配置高性能电解液/固态电解质等死锂抑制型策略,减少死锂的产生和积累。此外,分析了解决死锂问题的激活策略,利用氧化还原对实现死锂的转化、迁移、存储和再利用。由于锂腐蚀、界面溶解、内电场作用等,实际电池体系中死锂的结构组成、空间分布等都存在复杂的动态变化,仍需开展大量研究剖析死锂的动态演变机制,提出根治死锂问题的科学思路。

关键词: 死锂, 表征技术, 抑制策略, 死锂激活, 动态演变

Abstract:

Lithium (Li), which serves as a high-capacity anode, plays a crucial role in the construction of high-energy-density Li metal batteries. Despite its potential, the practical applications of Li metal batteries face significant challenges, which are prominently illustrated by the presence of dead Li. This issue results in severe degradation of battery life and safety. In this review, we explore the formation mechanism of dead Li, by using characterization techniques and proposing effective solutions. Primarily, dead Li originates from the incomplete Li stripping process, undergoing chemical/electrochemical corrosion by the electrolyte. The latter occurs during battery charge/discharge cycles and calendar aging. Drawing on our recent reports, this review employs cryo-electron microscopy, in-situ optical microscopy/Raman spectroscopy, and three-electrode electrochemical techniques to investigate the microstructures, compositions, and evolution mechanism of dead Li. In our findings, the inhibition strategies to mitigate the formation and accumulation of dead Li are outlined. These strategies include designing a host to support bulk Li, introducing protective layers to stabilize the interface, and formulating high-performance and solid-state electrolytes. In addition, we analyze the reactivation strategy for dead Li, enabling its conversion, migration, storage, and reuse. Given the complex dynamic changes in the structure, composition, and spatial distribution of dead Li in real cells—influenced by Li corrosion, interface dissolution, and the internal electric field—it is imperative to further investigate the dynamic evolution mechanism of dead Li. This pursuit aims to provide a scientific foundation for a comprehensive resolution of the dead Li issue.

Key words: dead Li, characterization techniques, inhibition strategy, dead Li reactivation, dynamic evolution

中图分类号: