储能科学与技术 ›› 2024, Vol. 13 ›› Issue (4): 1239-1252.doi: 10.19799/j.cnki.2095-4239.2024.0160

• 电池智能制造、在线监测与原位分析专刊 • 上一篇    下一篇

原位表征技术在锂硫电池机理研究中的应用

许旭鹏1,2(), 许旭明1, 陈虹艳1, 梁雅儒1(), 雷维新1(), 马增胜1, 陈国新2, 柯培玲2   

  1. 1.湘潭大学材料科学与工程学院特殊功能薄膜材料国家省级重点实验室,湖南 湘潭 411105
    2.中国科学院宁波材料技术与工程研究所,浙江 宁波 315201
  • 收稿日期:2024-02-28 修回日期:2024-03-06 出版日期:2024-04-26 发布日期:2024-04-22
  • 通讯作者: 梁雅儒,雷维新 E-mail:cailiaopeng@smail.xtu.edu.cn;yaruliang@xtu.edu.cn;wxlei@xtu.edu.cn
  • 作者简介:许旭鹏(1997—),男,博士研究生,研究方向为高性能储能器件正极材料研究和纳米材料的原位电化学测试,E-mail:cailiaopeng@smail.xtu.edu.cn
  • 基金资助:
    国家自然科学基金(12372101);湖南省自然科学基金(2020JJ5527)

Applications of in situ characterization techniques in the study of lithium-sulfur battery mechanisms

Xupeng XU1,2(), Xuming XU1, Hongyan CHEN1, LIANGYaru1(), Weixin LEI1(), Zengsheng MA1, Guoxin CHEN2, Peiling KE2   

  1. 1.National-Provincial Laboratory of Special Function Thin Film Materials, School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
    2.Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
  • Received:2024-02-28 Revised:2024-03-06 Online:2024-04-26 Published:2024-04-22
  • Contact: LIANGYaru, Weixin LEI E-mail:cailiaopeng@smail.xtu.edu.cn;yaruliang@xtu.edu.cn;wxlei@xtu.edu.cn

摘要:

商用锂离子电池的低能量密度已经无法满足电动汽车和电子设备迅速发展的需求,锂硫电池作为一种高能量密度、绿色环保且成本低廉的储能器件,已经成为储能领域的重要议题。然而,氧化还原动力学缓慢、穿梭效应严重、电解液耗竭以及锂负极的降解等问题依然阻碍着锂硫电池商业化的脚步。研究锂硫电池系统内各部件的基本反应机制对于解决以上问题,并进一步提高电池的整体性能至关重要。原位表征技术可用于锂硫电池充放电过程中各部件结构变化与反应进程的实时观察与研究,对锂硫电池机理的揭示有望从材料设计层面大幅提升电池整体性能。本文通过对近期研究工作进行总结,介绍了锂硫电池在提高循环寿命和高能量密度上遇到的瓶颈性问题,简述了原位拉曼光谱、原位透射电镜、原位共振非弹性X射线散射、原位红外光谱和原位核磁共振光谱等原位表征技术在锂硫电池中的应用。并结合锂硫电池涉及的氧化还原反应、多硫化物溶解、电解液对多硫化物的抑制以及锂负极降解等具体环节,重点分析了原位表征技术在这些具体环节中监测多硫化物转化过程和探究锂硫电池内部反应机理方面的研究进展,指出了原位表征技术在促进锂硫电池机理理解方面的重要作用。

关键词: 锂硫电池, 多硫化物, 原位表征技术, 作用机理

Abstract:

The inability of commercial lithium-ion batteries to meet the burgeoning demands of electric vehicles and electronic devices, owing to their low energy density, has propelled lithium-sulfur batteries (LSBs) to the forefront of energy storage research. Characterized by their high energy density, environmental friendliness, and cost-effectiveness, LSBs have emerged as a significant area of interest. Despite these advantages, challenges such as slow redox kinetics, pronounced shuttle effects, electrolyte depletion, and degradation of the lithium anode impede their commercial viability. Understanding the fundamental reaction mechanisms within the LSB system is essential for addressing these issues and enhancing the battery's overall performance. In situ characterization techniques offer the ability to observe the structural and reactional changes in battery components during operation, thereby shedding light on the mechanisms of LSBs and potentially leading to significant performance improvements through material design. This paper reviews recent research on overcoming the challenges faced by LSBs in achieving extended cycle life and high energy density. It also highlights the application of various in situ characterization techniques, including in situ Raman spectroscopy, in situ transmission electron microscopy, in situ resonant inelastic X-ray scattering, in situ infrared spectroscopy, and in situ NMR spectroscopy. Special attention is given to the advancements in in situ characterization technology for monitoring the polysulfide conversion process and elucidating the internal reaction mechanisms of LSBs, particularly in the context of redox reactions, polysulfide dissolution, electrolyte-induced polysulfide inhibition, and lithium anode degradation. The pivotal role of in situ characterization technology in enhancing the understanding of LSB mechanisms is underscored.

Key words: lithium-sulfur battery, polysulfides, in situ characterization technology, mechanism of action

中图分类号: