储能科学与技术 ›› 2024, Vol. 13 ›› Issue (4): 1253-1265.doi: 10.19799/j.cnki.2095-4239.2024.0093
• 电池智能制造、在线监测与原位分析专刊 • 上一篇 下一篇
收稿日期:
2024-01-30
修回日期:
2024-03-13
出版日期:
2024-04-26
发布日期:
2024-04-22
通讯作者:
郭新
E-mail:yuting_wang@hust.edu.cn;xguo@hust.edu.cn
作者简介:
王玉婷(1997—),女,博士研究生,研究方向为气体传感器,E-mail:yuting_wang@hust.edu.cn;
基金资助:
Yuting WANG(), Qiutong LI, Yiming HU, Xin GUO()
Received:
2024-01-30
Revised:
2024-03-13
Online:
2024-04-26
Published:
2024-04-22
Contact:
Xin GUO
E-mail:yuting_wang@hust.edu.cn;xguo@hust.edu.cn
摘要:
锂离子电池在便携式电子产品、储能电站和电动汽车等领域得到了广泛的应用。然而,在电池容量不断上升的同时,锂离子电池的热失控风险也在增加,进而带来安全问题。现有的电池管理系统通过监测电池表面温度以及端电压来判断电池的健康状况。但是研究发现由于电池组件的多层结构和较差的导热性,电池内部温度、气体等很难散发到外部,导致对电池表面温度等外部信号的监测存在时效性差的问题。因此人们尝试直接监测电池内部温度、压力、应变和气体等信号的变化情况,实现及时预警电池热失控,增强锂离子电池在不同应用场景下的安全性。本文在理解热失控机制的基础上,概述了可以监测电池内部信号的方法。总结了锂离子电池在发生热失控时涉及的一系列放热反应,及在这些反应过程中电池内部温度、压力和气体等信号的变化情况。对于能够直接监测电池内部信号的技术,主要介绍了电化学阻抗分析和内置传感器监测,为以后优化监测方法提供参考信息。其中,将传感器植入到电池内部在实际应用中具有良好的前景。为了进一步提高锂离子电池系统的安全性,本文还对未来可能的研究方向进行了展望。
中图分类号:
王玉婷, 李秋桐, 胡一鸣, 郭新. 锂离子电池内部信号监测技术概述[J]. 储能科学与技术, 2024, 13(4): 1253-1265.
Yuting WANG, Qiutong LI, Yiming HU, Xin GUO. Techniques for monitoring internal signals of lithium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(4): 1253-1265.
表1
不同温度传感器嵌入电池的方法及性能比较"
传感器 类型 | 传感器尺寸 | 验证电池 | 嵌入方法 | 响应时间 /灵敏度 | 稳定性 | 电池容量 | 参考文献 |
---|---|---|---|---|---|---|---|
热阻式 | 4 mm×5 mm | CR2032纽扣电池 | 借助3D打印的聚合物基板 | 5 s/3.883 Ω/℃ | — | 影响较小可忽略 | [ |
热阻式 | 310 μm×620 μm | 纽扣电池 正极:磷酸铁锂 负极:氧化钛锂 | 借助柔性聚酰亚胺薄膜衬底,构筑薄膜温度传感器 | — | 好 | 下降10.32% | [ |
热阻式 | 单个测量位点5 mm×5 mm,一共7个 | 软包电池 正极:镍钴锰酸锂 负极:石墨 | 用N-甲基吡咯烷酮溶剂在正极上去除小面积的活性物质 | — | 100次循环后测得的温度无明显差异 | 最初下降20%,循环500次之后并无明显下降 | [ |
热电偶 | 0.5 mm (带绝缘层) | 软包电池 正极:锰酸锂 负极:石墨 | 制造过程中,多个热电偶嵌入在层压电池的电极层之间 | 485~620 s | 几个月内仍可使用 | 忽略 | [ |
光纤 传感器 | 直径125 μm, 长12 mm | 商用18650 正极:磷酸铁锂 负极:石墨 | 电池负极的中心位置钻了一个1 mm的孔 | 10.3 pm/℃ | 热失控前后仍具有出色的再现性 | 100次循环后下降20% | [ |
表2
锂离子电池的内部信号监测技术的优缺点"
监测技术 | 优点 | 缺点 |
---|---|---|
EIS | 无需复杂硬件即可预测电池内部温度;热失控预测精度高;在线预测电池状态,与BMS无缝耦合 | 未能快速有效地监测大型电池;由于不同的锂离子电池系统阻抗参数不同,校准过程复杂;测试仪器较大,成本较高 |
内置式温度传感器 | 直接提供准确的电池内部温度,实现电池热失控精准预测 | 热阻式温度传感器监测温度范围较低;热电偶响应时间较长;光纤传感器对电池包装要求较高,且易受弯曲和振动的影响 |
内置式应变传感器 | 为快速准确分析阳极材料、内部应变分布、胶辊尺寸等因素对LIBs安全性的影响提供了一个平台 | 易受干扰;目前的应变传感器会破坏电池结构 |
内置式压力传感器 | 电池的荷电状态、工作温度等因素都会影响电池内部气压。实时监测电池内部气压的变化,对于了解电池的健康状况具有重要意义 | 现有的气压监测装置体积较大,应用困难 |
内置式气体传感器 | 热失控检测精度高、速度快;简单可行、易于实现、成本低;易于与BMS接口连接;可以探究电池内部气体衍化行为,为判断电池副反应提供依据 | 无法预测电池的状态;潜在的传感器故障,如气体交叉干扰和气体传感器中毒 |
1 | LIU Y Z, MENG X Y, WANG Z Y, et al. A Li2S-based all-solid-state battery with high energy and superior safety[J]. Science Advances, 2022, 8(1): eabl8390. |
2 | HU X J, GAO F F, XIAO Y, et al. Advancements in the safety of lithium-ion battery: The trigger, consequence and mitigation method of thermal runaway[J]. Chemical Engineering Journal, 2024, 481: 148450. |
3 | GUO X N, GUO S, WU C W, et al. Intelligent monitoring for safety-enhanced lithium-ion/sodium-ion batteries[J]. Advanced Energy Materials, 2023, 13: 2203903. |
4 | WEI G, HUANG R J, ZHANG G X, et al. A comprehensive insight into the thermal runaway issues in the view of lithium-ion battery intrinsic safety performance and venting gas explosion hazards[J]. Applied Energy, 2023, 349: 121651. |
5 | AN Z J, ZHAO Y B, DU X Z, et al. Experimental research on thermal-electrical behavior and mechanism during external short circuit for LiFePO4 Li-ion battery[J]. Applied Energy, 2023, 332: 120519. |
6 | CHEN H, ADEKOYA D, HENC Z L, et al. Stable seamless interfaces and rapid ionic conductivity of Ca-CeO2/LiTFSI/PEO composite electrolyte for high-rate and high-voltage all-solid-state battery[J]. Advanced Energy Materials, 2020, 10(21): 2000049. |
7 | CHEN H, ZHENG M T, QIAN S S, et al. Functional additives for solid polymer electrolytes in flexible and high-energy-density solid-state lithium-ion batteries[J]. Carbon Energy, 2021, 3(6): 929-956. |
8 | FENG X N, ZHENG S Q, REN D S, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy, 2019, 246: 53-64. |
9 | JONES C M, SUDARSHAN M, GARCÍA R E, et al. Direct measurement of internal temperatures of commercially-available 18650 lithium-ion batteries[J]. Scientific Reports, 2023, 13(1): 14421. |
10 | LOU P, ZHANG W X, HAN Q G, et al. Fabrication of fire-response functional separators with microcapsule fire extinguishing agent for lithium-ion battery safety[J]. Nano Select, 2022, 3(5): 947-955. |
11 | LIAO Z H, ZHANG S, LI K, et al. A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries[J]. Journal of Power Sources, 2019, 436: 226879. |
12 | SONG Y Z, LIU X, REN D S, et al. Simultaneously blocking chemical crosstalk and internal short circuit via gel-stretching derived nanoporous non-shrinkage separator for safe lithium-ion batteries[J]. Advanced Materials, 2022, 34(2): e2106335. |
13 | LIU K L, LI K, PENG Q, et al. A brief review on key technologies in the battery management system of electric vehicles[J]. Frontiers of Mechanical Engineering, 2019, 14(1): 47-64. |
14 | PARHIZI M, AHMED M B, JAIN A. Determination of the core temperature of a Li-ion cell during thermal runaway[J]. Journal of Power Sources, 2017, 370: 27-35. |
15 | VINCENT T A, GULSOY B, SANSOM J E H, et al. In-situ instrumentation of cells and power line communication data acquisition towards smart cell development[J]. Journal of Energy Storage, 2022, 50: 104218. |
16 | ALCOCK K M, GRAMMEL M, GONZÁLEZ-VILA Á, et al. An accessible method of embedding fibre optic sensors on lithium-ion battery surface for in situ thermal monitoring[J]. Sensors and Actuators A: Physical, 2021, 332: 113061. |
17 | FENG X N, REN D S, HE X M, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770. |
18 | MEI W X, LIU Z, WANG C D, et al. Operando monitoring of thermal runaway in commercial lithium-ion cells via advanced lab-on-fiber technologies[J]. Nature Communications, 2023, 14(1): 5251. |
19 | SHI S, LYU N W, JIANG X, et al. Hydrogen gas diffusion behavior and detector installation optimization of lithium-ion battery energy-storage cabin[J]. Journal of Energy Storage, 2023, 67: 107510. |
20 | YUAN L M, DUBANIEWICZ T, ZLOCHOWER I, et al. Experimental study on thermal runaway and vented gases of lithium-ion cells[J]. Process Safety and Environmental Protection, 2020, 144: 186-192. |
21 | BORDES A, MARLAIR G, ZANTMAN A, et al. Safety evaluation of a sodium-ion cell: Assessment of vent gas emissions under thermal runaway[J]. ACS Energy Letters, 2022, 7(10): 3386-3391. |
22 | OLEG L, NICOLAE M, DAVID S, et al. Development of 2-in-1 sensors for the safety assessment of lithium-ion batteries via early detection of vapors produced by electrolyte solvents[J]. ACS Applied Materials & Interfaces, 2023, 15(22): 27340-27356. |
23 | BELT J, SORENSEN A. Thermal and electrochemical analysis of thermal runaway propagation of Samsung cylindrical cells in lithium-ion battery modules[J]. Journal of the Electrochemical Society, 2023, 170(1): 010515. |
24 | JIA Z Z, QIN P, LI Z, et al. Analysis of gas release during the process of thermal runaway of lithium-ion batteries with three different cathode materials[J]. Journal of Energy Storage, 2022, 50: 104302. |
25 | CAI T, VALECHA P, TRAN V, et al. Detection of Li-ion battery failure and venting with carbon dioxide sensors[J]. eTransportation, 2021, 7: 100100. |
26 | LI W, ZHU J E, XIA Y, et al. Data-driven safety envelope of lithium-ion batteries for electric vehicles[J]. Joule, 2019, 3: 2703-2715. |
27 | REN D S, FENG X N, LIU L S, et al. Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition[J]. Energy Storage Materials, 2021, 34: 563-573. |
28 | CARKHUFF B G, DEMIREV P A, SRINIVASAN R. Impedance-based battery management system for safety monitoring of lithium-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2018, 65(8): 6497-6504. |
29 | SCHMIDT J P, ARNOLD S, LOGES A, et al. Measurement of the internal cell temperature via impedance: Evaluation and application of a new method[J]. Journal of Power Sources, 2013, 243: 110-117. |
30 | YANG L, LI N, HU L K, et al. Internal field study of 21700 battery based on long-life embedded wireless temperature sensor[J]. Acta Mechanica Sinica, 2021, 37(6): 895-901. |
31 | SRINIVASAN R, DEMIREV P A, CARKHUFF B G. Rapid monitoring of impedance phase shifts in lithium-ion batteries for hazard prevention[J]. Journal of Power Sources, 2018, 405: 30-36. |
32 | WEI Z B, ZHAO J Y, HE H W, et al. Future smart battery and management: Advanced sensing from external to embedded multi-dimensional measurement[J]. Journal of Power Sources, 2021, 489. |
33 | RAGHAVAN A, KIESEL P, SOMMER L W, et al. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems Part 1: Cell embedding method and performance[J]. Journal of Power Sources, 2017, 341: 466-473. |
34 | LEE C Y, LEE S J, TANG M S, et al. In situ monitoring of temperature inside lithium-ion batteries by flexible micro temperature sensors[J]. Sensors, 2011, 11(10): 9942-9950. |
35 | PAREKH M H, LI B, PALANISAMY M, et al. In situ thermal runaway detection in lithium-ion batteries with an integrated internal sensor[J]. ACS Applied Energy Materials, 2020, 3: 7997-8008. |
36 | ZHAO J Z, LI H, CHOI H, et al. Insertable thin film thermocouples for in situ transient temperature monitoring in ultrasonic metal welding of battery tabs[J]. Journal of Manufacturing Processes, 2013, 15(1): 136-140. |
37 | MARTINY N, RHEINFELD A, GEDER J, et al. Development of an all Kapton-based thin-film thermocouple matrix for in situ temperature measurement in a lithium ion pouch cell[J]. IEEE Sensors Journal, 2014, 14(10): 3377-3384. |
38 | MUTYALA M S K, ZHAO J Z, LI J Y, et al. In-situ temperature measurement in lithium ion battery by transferable flexible thin film thermocouples[J]. Journal of Power Sources, 2014, 260: 43-49. |
39 | FLEMING J, AMIETSZAJEW T, MCTURK E, et al. Development and evaluation of in situ instrumentation for cylindrical Li-ion cells using fibre optic sensors[J]. HardwareX, 2018, 3: 100-109. |
40 | MCTURK E, AMIETSZAJEW T, FLEMING J, et al. Thermo-electrochemical instrumentation of cylindrical Li-ion cells[J]. Journal of Power Sources, 2018, 379: 309-316. |
41 | LI B, PAREKH M H, POL V G, et al. Operando monitoring of electrode temperatures during overcharge-caused thermal runaway[J]. Energy Technology, 2021, 9: 2100497. |
42 | FLEMING J, AMIETSZAJEW T, CHARMET J, et al. The design and impact of in situ and operando thermal sensing for smart energy storage[J]. Journal of Energy Storage, 2019, 22: 36-43. |
43 | WANG P D, ZHANG X Y, YANG L, et al. Real-time monitoring of internal temperature evolution of the lithium-ion coin cell battery during the charge and discharge process[J]. Extreme Mechanics Letters, 2016, 9: 459-466. |
44 | LI B, PAREKH M H, ADAMS R A, et al. Lithium-ion battery thermal safety by early internal detection, prediction and prevention[J]. Scientific Reports, 2019, 9(1): 13255. |
45 | LEE C Y, PENG H C, LEE S J, et al. A flexible three-in-one microsensor for real-time monitoring of internal temperature, voltage and current of lithium batteries[J]. Sensors, 2015, 15(5): 11485-11498. |
46 | ZHU S X, HAN J D, AN H Y, et al. A novel embedded method for in situ measuring internal multi-point temperatures of lithium ion batteries[J]. Journal of Power Sources, 2020, 456: 227981. |
47 | ZHANG H Y, ZHANG X S, WANG W W, et al. Detection and prediction of the early thermal runaway and control of the Li-ion battery by the embedded temperature sensor array[J]. Sensors, 2023, 23(11): 5049. |
48 | GULSOY B, VINCENT T A, SANSOM J E H, et al. In-situ temperature monitoring of a lithium-ion battery using an embedded thermocouple for smart battery applications[J]. Journal of Energy Storage, 2022, 54: 105260. |
49 | LI Z, ZHANG J B, WU B, et al. Examining temporal and spatial variations of internal temperature in large-format laminated battery with embedded thermocouples[J]. Journal of Power Sources, 2013, 241: 536-553. |
50 | XU C S, FENG X N, HUANG W S, et al. Internal temperature detection of thermal runaway in lithium-ion cells tested by extended-volume accelerating rate calorimetry[J]. Journal of Energy Storage, 2020, 31: 101670. |
51 | ZHANG G S, CAO L, GE S H, et al. In situ measurement of radial temperature distributions in cylindrical Li-ion cells[J]. Journal of the Electrochemical Society, 2014, 161(10): A1499-A1507 |
52 | WEI Z B, HU J, HE H W, et al. Embedded distributed temperature sensing enabled multistate joint observation of smart lithium-ion battery[J]. IEEE Transactions on Industrial Electronics, 2023, 70(1): 555-565. |
53 | LI H Y, WEI F, LI Y Z, et al. Optical fiber sensor based on upconversion nanoparticles for internal temperature monitoring of Li-ion batteries[J]. Journal of Materials Chemistry C, 2021, 9(41): 14757-14765. |
54 | GERVILLIÉ-MOURAVIEFF C, BOUSSARD-PLÉDEL C, HUANG J Q, et al. Unlocking cell chemistry evolution with operando fibre optic infrared spectroscopy in commercial Na(Li)-ion batteries[J]. Nature Energy, 2022, 7: 1157-1169. |
55 | MIAO Z Y, LI Y P, XIAO X P, et al. Direct optical fiber monitor on stress evolution of the sulfur-based cathodes for lithium-sulfur batteries[J]. Energy & Environmental Science, 2022, 15(5): 2029-2038. |
56 | HUANG J Q, HAN X L, LIU F, et al. Monitoring battery electrolyte chemistry via in-operando tilted fiber Bragg grating sensors[J]. Energy & Environmental Science, 2021, 14(12): 6464-6475. |
57 | MIELE E, DOSE W M, MANYAKIN I, et al. Hollow-core optical fibre sensors for operando Raman spectroscopy investigation of Li-ion battery liquid electrolytes[J]. Nature Communications, 2022, 13(1): 1651. |
58 | WANG X, ZHU J, WEI X, et al. Non-damaged lithium-ion batteries integrated functional electrode for operando temperature sensing[J]. Energy Storage Materials, 2024, 65: 103160. |
59 | NOVAIS S, NASCIMENTO M, GRANDE L, et al. Internal and external temperature monitoring of a Li-ion battery with fiber Bragg grating sensors[J]. Sensors, 2016, 16(9): 1394. |
60 | AMIETSZAJEW T, MCTURK E, FLEMING J, et al. Understanding the limits of rapid charging using instrumented commercial 18650 high-energy Li-ion cells[J]. Electrochimica Acta, 2018, 263: 346-352. |
61 | HUANG J Q, ALBERO BLANQUER L, BONEFACINO J, et al. Operando decoding of chemical and thermal events in commercial Na(Li)-ion cells via optical sensors[J]. Nature Energy, 2020, 5: 674-683. |
62 | YAO J F. Damage detection and warning system of a battery pack: US10923777[P]. 2021-02-16. |
63 | LUNA. Improving battery pack structural performance: A better alternative to strain gages[EB/OL]. [2024-03-13]. https://lunainc.com/solution/Improving-battery-pack-structural-performance. |
64 | RUGGED. Fiber optic temperature sensors in electric vehicle temperature testing[EB/OL]. [2024-03-13]. https://idm-instrumentos.es/wp-content/uploads/2021/06/RuggedM-Vehiculo-Electrico.pdf. |
65 | INSPLORION. Sensors inside of battery cells[EB/OL]. [2024-03-13]. https://www.insplorion.com/en/. |
66 | MAO N, ZHANG T, WANG Z R, et al. Revealing the thermal stability and component heat contribution ratio of overcharged lithium-ion batteries during thermal runaway[J]. Energy, 2023, 263: 125786. |
67 | WANG L B, LI B Q, CHEN J Y, et al. Coupled effect of SOC and SOH on tensile behaviors of lithium-ion battery electrodes[J]. Journal of Energy Storage, 2023, 68: 107782. |
68 | LI M, CHEN W G, SHEN Z W, et al. Characterization of temperature and strain changes in lithium-ion batteries based on a hinged differential lever sensitization fiber Bragg grating strain-temperature simultaneous-measurement sensor[J]. Sensors, 2024, 24: 412. |
69 | ZHU S X, YANG L, WEN J W, et al. In operando measuring circumferential internal strain of 18650 Li-ion batteries by thin film strain gauge sensors[J]. Journal of Power Sources, 2021, 516: 230669. |
70 | FORTIER A, TSAO M, WILLIARD N D, et al. Preliminary study on integration of fiber optic Bragg grating sensors in Li-ion batteries and in situ strain and temperature monitoring of battery cells[J]. Energies, 2017, 10(7): 838. |
71 | NASCIMENTO M, NOVAIS S, DING M S, et al. Internal strain and temperature discrimination with optical fiber hybrid sensors in Li-ion batteries[J]. Journal of Power Sources, 2019, 410: 1-9. |
72 | CAI T, STEFANOPOULOU A G, SIEGEL J B. Early detection for Li-ion batteries thermal runaway based on gas sensing[J]. ECS Transactions, 2019, 89: 85-97. |
73 | MATASSO A, WONG D, WETZ D, et al. Correlation of bulk internal pressure rise and capacity degradation of commercial LiCoO2 cells[J]. Journal of the Electrochemical Society, 2014, 161(14): A2031-A2035. |
74 | SCHIELE A, HATSUKADE T, BERKES B B, et al. High-throughput in situ pressure analysis of lithium-ion batteries[J]. Analytical Chemistry, 2017, 89(15): 8122-8128. |
75 | MUSSA A S, KLETT M, LINDBERGH G, et al. Effects of external pressure on the performance and ageing of single-layer lithium-ion pouch cells[J]. Journal of Power Sources, 2018, 385: 18-26. |
76 | LEE C Y, WENG F B, HUANG Y P, et al. Real-time monitoring of internal temperature and voltage of high-temperature fuel cell stack[J]. Electrochimica Acta, 2015, 161: 413-419. |
77 | KOCH S, BIRKE K, KUHN R. Fast thermal runaway detection for lithium-ion cells in large scale traction batteries[J]. Batteries, 2018, 4(2): 16. |
78 | CHEN X R, GAN L, GUO X. Optical fiber-based gas sensing for early warning of thermal runaway in lithium-ion batteries[J]. Advanced Sensor Research, 2023, 2(12): 2300055. |
79 | JIN Y, ZHENG Z K, WEI D H, et al. Detection of micro-scale Li dendrite via H2 gas capture for early safety warning[J]. Joule, 2020, 4(8): 1714-1729. |
80 | LIU P, YANG L Y, XIAO B W, et al. Revealing lithium battery gas generation for safer practical applications[J]. Advanced Functional Materials, 2022, 32: 2208586. |
81 | LEE C-Y, CHEN C-H, YANG C-Y, et al. Low-temperature flexible micro hydrogen sensor embedded in a proton battery for real-time microscopic diagnosis[J]. Micromachines, 2021, 12: 1215. |
[1] | 韩亚露, 陈奕戈, 邸会芳, 林杰欢, 王振兵, 张扬, 苏方远, 陈成猛. 锂离子电池不同服役工况下失效研究进展[J]. 储能科学与技术, 2024, 13(4): 1338-1349. |
[2] | 汤元会, 袁博兴, 李杰, 张云龙. 圆柱形锂离子电池在针刺条件下的安全性研究[J]. 储能科学与技术, 2024, 13(4): 1326-1334. |
[3] | 袁悦博, 王贺武, 孔祥栋, 蒲明伟, 孙玉坤, 韩雪冰, 欧阳明高. 金属异物缺陷演化特性及其对产线 K 值的影响机制[J]. 储能科学与技术, 2024, 13(4): 1197-1204. |
[4] | 李革, 孔祥栋, 孙跃东, 陈飞, 袁悦博, 韩雪冰, 郑岳久. 基于产线大数据的锂离子电池一致性动态特性分选方法[J]. 储能科学与技术, 2024, 13(4): 1188-1196. |
[5] | 茆志友, 宁小玉, 张培培, 张贝, 相佳媛. 陶瓷隔膜对锂离子电池热失控影响及电池设计优化分析[J]. 储能科学与技术, 2024, 13(4): 1154-1158. |
[6] | 刘淳正, 来沛霈, 孙卓, 聂耳, 张哲娟. 构造凹陷的硅碳颗粒提高锂离子电池负极电化学性能[J]. 储能科学与技术, 2024, 13(4): 1302-1309. |
[7] | 李炳金, 韩晓霞, 张文杰, 曾伟国, 武晋德. 锂离子电池剩余使用寿命预测方法综述[J]. 储能科学与技术, 2024, 13(4): 1266-1276. |
[8] | 杨家沐, 陈育新, 练成, 徐至, 刘洪来. 电极浆料涂布模头流场分析与结构优化[J]. 储能科学与技术, 2024, 13(4): 1109-1117. |
[9] | 何春汕, 王子阳, 姚斌. 不同放电功率下的储能用磷酸铁锂电池热失控特性实验研究[J]. 储能科学与技术, 2024, 13(3): 981-989. |
[10] | 刘剑, 于立博, 吴振兴, 牟介刚. 基于风冷的锂离子电池充放电设备热特性影响研究[J]. 储能科学与技术, 2024, 13(3): 914-923. |
[11] | 孙明明. 有机无机复合锂离子电池固态电解质专利分析[J]. 储能科学与技术, 2024, 13(3): 1096-1105. |
[12] | 张稚国, 李华清, 王莉, 何向明. 锂离子电池塑料-金属复合集流体的特性及制备研究进展[J]. 储能科学与技术, 2024, 13(3): 749-758. |
[13] | 朱亚宁, 张振东, 盛雷, 陈龙, 朱泽华, 付林祥, 毕青. 21700锂离子电池在不同健康状态下的热失控实验研究[J]. 储能科学与技术, 2024, 13(3): 971-980. |
[14] | 武美玲, 牛磊, 李世友, 赵冬妮. 正极预锂化添加剂用于锂离子电池的研究进展[J]. 储能科学与技术, 2024, 13(3): 759-769. |
[15] | 申小雨, 尹丛勃. 基于卷积Fastformer的锂离子电池健康状态估计[J]. 储能科学与技术, 2024, 13(3): 990-999. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||