1 |
VETTER J, NOV\'AK P, WAGNER M R, et al. Ageing mechanisms in lithium-ion batteries[J]. Journal of Power Sources, 2005, 147(1): 269-281.
|
2 |
WEISS M, RUESS R, KASNATSCHEEW J, et al. Fast charging of lithium-ion batteries: A review of materials aspects[J]. Advanced Energy Materials, 2021, 11(33): 2101126.
|
3 |
JOW T R, DELP S A, ALLEN J L, et al. Factors limiting Li+ charge transfer kinetics in Li-ion batteries[J]. Journal of the Electrochemical Society, 2018, 165(2): A361-A367.
|
4 |
LIU Q Q, DU C Y, SHEN B, et al. Understanding undesirable anode lithium plating issues in lithium-ion batteries[J]. RSC Advances, 2016, 6(91): 88683-88700.
|
5 |
WALDMANN T, HOGG B I, WOHLFAHRT-MEHRENS M. Li plating as unwanted side reaction in commercial Li-ion cells - A review[J]. Journal of Power Sources, 2018, 384: 107-124.
|
6 |
XU K, VON CRESCE A, LEE U. Differentiating contributions to "ion transfer" barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface[J]. Langmuir, 2010, 26(13): 11538-11543.
|
7 |
LIN X K, KHOSRAVINIA K, HU X S, et al. Lithium plating mechanism, detection, and mitigation in lithium-ion batteries[J]. Progress in Energy and Combustion Science, 2021, 87: 100953.
|
8 |
LEGRAND N, KNOSP B, DESPREZ P, et al. Physical characterization of the charging process of a Li-ion battery and prediction of Li plating by electrochemical modelling[J]. Journal of Power Sources, 2014, 245: 208-216.
|
9 |
BIRKENMAIER C, BITZER B, HARZHEIM M, et al. Lithium plating on graphite negative electrodes: Innovative qualitative and quantitative investigation methods[J]. Journal of the Electrochemical Society, 2015, 162(14): A2646-A2650.
|
10 |
PASTOR-FERNÁNDEZ C, BRUEN T, WIDANAGE W D, et al. A study of cell-to-cell interactions and degradation in parallel strings: Implications for the battery management system[J]. Journal of Power Sources, 2016, 329: 574-585.
|
11 |
BIRKL C R, ROBERTS M R, MCTURK E, et al. Degradation diagnostics for lithium ion cells[J]. Journal of Power Sources, 2017, 341: 373-386.
|
12 |
CHANDRASEKARAN R. Quantification of bottlenecks to fast charging of lithium-ion-insertion cells for electric vehicles[J]. Journal of Power Sources, 2014, 271: 622-632.
|
13 |
HEIN S, LATZ A. Influence of local lithium metal deposition in 3D microstructures on local and global behavior of Lithium-ion batteries[J]. Electrochimica Acta, 2016, 201: 354-365.
|
14 |
YU Z Y, BAI M H, SONG W F, et al. Influence of lithium difluorophosphate additive on the high voltage LiNi0.8Co0.1Mn0.1O2/graphite battery[J]. Ceramics International, 2021, 47(1): 157-162.
|
15 |
LI H Y, LIU A, ZHANG N, et al. An unavoidable challenge for Ni-rich positive electrode materials for lithium-ion batteries[J]. Chemistry of Materials, 2019, 31(18): 7574-7583.
|
16 |
KO D S, PARK J H, YU B Y, et al. Degradation of high-nickel-layered oxide cathodes from surface to bulk: A comprehensive structural, chemical, and electrical analysis[J]. Advanced Energy Materials, 2020, 10(36): 2001035.
|
17 |
ROMANO BRANDT L, MARIE J J, MOXHAM T, et al. Synchrotron X-ray quantitative evaluation of transient deformation and damage phenomena in a single nickel-rich cathode particle[J]. Energy & Environmental Science, 2020, 13(10): 3556-3566.
|
18 |
WANG L, QIU J Y, WANG X D, et al. Insights for understanding multiscale degradation of LiFePO4 cathodes[J]. eScience, 2022, 2(2): 125-137.
|
19 |
刘晓梅, 姚斌, 谢乐琼, 等. 磷酸铁锂动力电池常温循环衰减机理分析[J]. 储能科学与技术, 2021, 10(4): 1338-1343.
|
|
LIU X M, YAO B, XIE L Q, et al. Analysis of the capacity fading mechanism in lithium iron phosphate power batteries cycled at ambient temperatures[J]. Energy Storage Science and Technology, 2021, 10(4): 1338-1343.
|
20 |
STIASZNY B, ZIEGLER J C, KRAUß E E, et al. Electrochemical characterization and post-mortem analysis of aged LiMn2O4-NMC/graphite lithium ion batteries part II: Calendar aging[J]. Journal of Power Sources, 2014, 258: 61-75.
|
21 |
KRUPP A, BECKMANN R, DIEKMANN T, et al. Calendar aging model for lithium-ion batteries considering the influence of cell characterization[J]. Journal of Energy Storage, 2022, 45: 103506.
|
22 |
KHALEGHI RAHIMIAN S, FOROUZAN M M, HAN S, et al. A generalized physics-based calendar life model for Li-ion cells[J]. Electrochimica Acta, 2020, 348: 136343.
|
23 |
SUI X, ŚWIERCZYŃSKI M, TEODORESCU R, et al. The degradation behavior of LiFePO4/C batteries during long-term calendar aging[J]. Energies, 2021, 14(6): 1732.
|
24 |
HAHN S L, STORCH M, SWAMINATHAN R, et al. Quantitative validation of calendar aging models for lithium-ion batteries[J]. Journal of Power Sources, 2018, 400: 402-414.
|
25 |
STREHLE B, FRIEDRICH F, GASTEIGER H A. A comparative study of structural changes during long-term cycling of NCM-811 at ambient and elevated temperatures[J]. Journal of the Electrochemical Society, 2021, 168(5): 050512.
|
26 |
CHAE B G, PARK S Y, SONG J H, et al. Evolution and expansion of Li concentration gradient during charge-discharge cycling[J]. Nature Communications, 2021, 12: 3814.
|
27 |
XU G J, PANG C G, CHEN B B, et al. Prescribing functional additives for treating the poor performances of high-voltage (5 V-class) LiNi0.5Mn1.5O4/MCMB Li-ion batteries[J]. Advanced Energy Materials, 2018, 8(9): 1701398.
|
28 |
TAN S, SHADIKE Z, LI J Z, et al. Additive engineering for robust interphases to stabilize high-Ni layered structures at ultra-high voltage of 4.8 V[J]. Nature Energy, 2022, 7: 484-494.
|
29 |
WANG Y, CHANG X W, LI Z Y, et al. Preventing sudden death of high-energy lithium-ion batteries at elevated temperature through interfacial ion-flux rectification[J]. Advanced Functional Materials, 2023, 33(4): 2208329.
|
30 |
PETZ D, BARAN V, PESCHEL C, et al. Aging-driven composition and distribution changes of electrolyte and graphite anode in 18650-type Li-ion batteries[J]. Advanced Energy Materials, 2022, 12(45): 2201652.
|
31 |
王其钰, 王朔, 张杰男, 等. 锂离子电池失效分析概述[J]. 储能科学与技术, 2017, 6(5): 1008-1025.
|
|
WANG Q Y, WANG S, ZHANG J N, et al. Overview of the failure analysis of lithium ion batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 1008-1025.
|
32 |
MOTAPON S N, LACHANCE E, DESSAINT L A, et al. A generic cycle life model for lithium-ion batteries based on fatigue theory and equivalent cycle counting[J]. IEEE Open Journal of the Industrial Electronics Society, 2020, 1: 207-217.
|
33 |
SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4: 383-391.
|
34 |
史永胜, 李锦, 任嘉睿, 等. 基于WOA-XGBoost的锂离子电池剩余使用寿命预测[J]. 储能科学与技术, 2022, 11(10): 3354-3363.
|
|
SHI Y S, LI J, REN J R, et al. Prediction of residual service life of lithium-ion battery using WOA-XGBoost[J]. Energy Storage Science and Technology, 2022, 11(10): 3354-3363.
|
35 |
YI S Z, WANG B, CHEN Z A, et al. The difference in aging behaviors and mechanisms between floating charge and cycling of LiFePO4/graphite batteries[J]. Ionics, 2019, 25(5): 2139-2145.
|
36 |
尹涛, 郑莉莉, 贾隆舟, 等. 锂离子电池浮充电研究综述[J]. 储能科学与技术, 2021, 10(1): 310-318.
|
|
YIN T, ZHENG L L, JIA L Z, et al. Overview of research on float charging for lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(1): 310-318.
|
37 |
GUAN T, SUN S, GAO Y Z, et al. The effect of elevated temperature on the accelerated aging of LiCoO2/mesocarbon microbeads batteries[J]. Applied Energy, 2016, 177: 1-10.
|
38 |
HIROOKA M, SEKIYA T, OMOMO Y, et al. Improvement of float charge durability for LiCoO2 electrodes under high voltage and storage temperature by suppressing O1-Phase transition[J]. Journal of Power Sources, 2020, 463: 228127.
|
39 |
XIA J, NELSON K J, LU Z H, et al. Impact of electrolyte solvent and additive choices on high voltage Li-ion pouch cells[J]. Journal of Power Sources, 2016, 329: 387-397.
|
40 |
赵伟, 肖祥, 梅成林. 磷酸铁锂/石墨电池浮充工况下的失效机理研究[J]. 电源技术, 2020, 44(4): 492-495.
|
|
ZHAO W, XIAO X, MEI C L. Study on failure mechanism of LiFePO4/graphite battery under floating charge[J]. Chinese Journal of Power Sources, 2020, 44(4): 492-495.
|
41 |
孔令丽, 张克军, 夏晓萌, 等. 高电压锂离子电池高温浮充性能影响因素分析与改善[J]. 储能科学与技术, 2019, 8(6): 1165-1170.
|
|
KONG L L, ZHANG K J, XIA X M, et al. Analysis and improvement of high temperature floating charge performance for high voltage lithium ion batteries[J]. Energy Storage Science and Technology, 2019, 8(6): 1165-1170.
|
42 |
TSUJIKAWA T, YABUTA K, MATSUSHITA T, et al. A study on the cause of deterioration in float-charged lithium-ion batteries using LiMn2O4 as a cathode active material[J]. Journal of the Electrochemical Society, 2011, 158(3): A322.
|
43 |
尹涛. 浮充工况下储能锂离子电池性能研究[D]. 青岛: 青岛大学, 2022.
|
|
YIN T. Study on performance of energy storage lithium-ion battery under floating charge condition[D]. Qingdao: Qingdao University, 2022.
|
44 |
李懿洋. 锂离子电池低温充放电循环与高温浮充下的失效机理研究[D]. 北京: 清华大学, 2017.
|
|
LI Y Y. Study on the failure mechanism of lithium-ion batteries under low-temperature charge-discharge cycles and high-temperature float charge[D]. Beijing: Tsinghua University, 2017.
|