储能科学与技术 ›› 2024, Vol. 13 ›› Issue (4): 1338-1349.doi: 10.19799/j.cnki.2095-4239.2023.0655

• 储能测试与评价 • 上一篇    下一篇

锂离子电池不同服役工况下失效研究进展

韩亚露1,3(), 陈奕戈2, 邸会芳1, 林杰欢2, 王振兵1, 张扬2, 苏方远1, 陈成猛1()   

  1. 1.中国科学院山西煤炭化学研究所,山西 太原 030001
    2.广东电网有限责任公司惠州供电局,广东 惠州 516000
    3.中国科学院大学,北京 100049
  • 收稿日期:2023-09-15 修回日期:2023-10-07 出版日期:2024-04-26 发布日期:2024-04-22
  • 通讯作者: 陈成猛 E-mail:hanyalu20@mails.ucas.ac.cn;ccm@sxicc.ac.cn
  • 作者简介:韩亚露(1998—),女,博士研究生,研究方向为锂离子电池失效分析,E-mail:hanyalu20@mails.ucas.ac.cn
  • 基金资助:
    山西省重点研发计划项目(201903D121007);山西省重点研发计划项目(2021020660301013)

Research progress on failure of lithium-ion batteries under different service conditions

Yalu HAN1,3(), Yige CHEN2, Huifang DI1, Jiehuan LIN2, Zhenbing WANG1, Yang ZHANG2, Fangyuan SU1, Chengmeng CHEN1()   

  1. 1.Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, Shanxi, China
    2.Huizhou Power Supply Bureau of Guangdong Power Grid Corporation, Huizhou 516000, Guangdong, China
    3.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2023-09-15 Revised:2023-10-07 Online:2024-04-26 Published:2024-04-22
  • Contact: Chengmeng CHEN E-mail:hanyalu20@mails.ucas.ac.cn;ccm@sxicc.ac.cn

摘要:

锂离子电池在长期服役时极易出现失效现象,包括内阻增大、容量衰减、析锂、产气等,其失效过程难以监测,容易导致锂离子电池的安全性、可靠性和使用寿命严重降低。通过研究搁置、长循环及浮充等不同服役工况下电池的失效原因,了解电池失效机制,可以快速监测电池的健康状态和服役寿命。本文对不同服役工况下电池失效的相关研究进行探讨,综述了在不同温度、电压和荷电状态等条件下服役时,锂离子电池内部正极、负极、隔膜和电解液的失效机理,着重介绍了电池在不同电压和温度下的搁置性能、搁置下的失效模型、长循环后正负极结构的变化、高温浮充后的失效机制及产气机理。同时也有针对性地提出了锂电负极材料、隔膜、电解液及正极材料等相关要素的优化方案。综合分析表明电极中活性锂的损失、活性物质的损失、颗粒的破裂、过渡金属的溶出、固体电解质界面膜(SEI)分解等都会引起锂离子电池的失效。减小颗粒粒径、加入电解液成膜添加剂以及优化隔膜的穿透性等,有望降低锂离子电池在长期服役过程中的失效速率,确保锂离子电池安全稳定运行。

关键词: 锂离子电池, 失效, 搁置, 长循环, 浮充

Abstract:

Lithium-ion batteries are susceptible to failure during extended use, manifesting as increased internal resistance, capacity decay, lithium plating, and gas generation, among other issues. The challenge of monitoring these failure processes can significantly compromise the safety, reliability, and lifespan of these batteries. Investigating the causes of battery failure under various service conditions, such as calendar aging, extensive cycling, and floating charge, is crucial for understanding the failure mechanisms and effectively monitoring the battery's health and lifespan. This paper reviews existing research on battery failure under different conditions and summarizes the failure mechanisms within the internal components of lithium-ion batteries-cathode, anode, separator, and electrolyte-under various temperature, voltage, and state of charge conditions. It highlights the effects of voltage and temperature on calendar aging, models of failure due to calendar aging, alterations in cathode and anode materials after prolonged cycling, failure mechanisms following high-temperature float charging, and the mechanisms of battery gas generation. Additionally, it proposes targeted optimization strategies for anode materials, separators, electrolytes, and cathode materials in lithium batteries. Comprehensive analysis indicates that failure in lithium-ion batteries can result from lithium loss in electrodes, active material loss, particle breakdown, transition metal dissolution, and solid electrolyte interface decomposition. By minimizing particle size, incorporating electrolyte film-forming additives, and enhancing separator permeability, the failure rate of lithium-ion batteries during long-term service can be reduced, ensuring their safe and stable operation.

Key words: lithium-ion battery, failure, calendar aging, long cycles, floating charge

中图分类号: