1 |
YOKO A, OSHIMA Y. Recovery of silicon from silicon sludge using supercritical water[J]. The Journal of Supercritical Fluids, 2013, 75: 1-5.
|
2 |
WANG M Y, XI F S, LI S Y, et al. ZIF-67-derived porous nitrogen-doped carbon shell encapsulates photovoltaic silicon cutting waste as anode in high-performance lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2023, 931: 117210.
|
3 |
ZHAO Z Y, CHEN F Q, HAN J W, et al. Revival of microparticular silicon for superior lithium storage[J]. Advanced Energy Materials, 2023, 13(24): 2300367.
|
4 |
郑瀚, 来沛霈, 田晓华, 等. 多级碳复合的大尺寸硅颗粒在锂离子电池负极中的性能[J]. 储能科学与技术, 2023, 12(1): 23-34.
|
|
ZHENG H, LAI P P, TIAN X H, et al. Performance of large-scale silicon particles coated with multistage carbon as anode materials for lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(1): 23-34.
|
5 |
田晓华, 余晨露, 郑瀚, 等. 硅碳复合结构对锂离子电池负极电化学性能的影响[J]. 华东师范大学学报(自然科学版), 2022(1): 52-61.
|
|
TIAN X H, YU C L, ZHENG H, et al. Effect of silicon/carbon composite structure on its electrochemical performance as a lithium-ion battery anode[J]. Journal of East China Normal University (Natural Science), 2022(1): 52-61.
|
6 |
SHI Q T, ZHOU J H, ULLAH S, et al. A review of recent developments in Si/C composite materials for Li-ion batteries[J]. Energy Storage Materials, 2021, 34: 735-754.
|
7 |
CASIMIR A, ZHANG H G, OGOKE O, et al. Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation[J]. Nano Energy, 2016, 27: 359-376.
|
8 |
WU H, CUI Y. Designing nanostructured Si anodes for high energy lithium ion batteries[J]. Nano Today, 2012, 7(5): 414-429.
|
9 |
CHEN K X, XIONG J Y, YU H, et al. Si@nitrogen-doped porous carbon derived from covalent organic framework for enhanced Li-storage[J]. Journal of Colloid and Interface Science, 2023, 634: 176-184.
|
10 |
WOO S H, PARK J H, HWANG S W, et al. Silicon embedded nanoporous carbon composite for the anode of Li ion batteries[J]. Journal of the Electrochemical Society, 2012, 159(8): A1273-A1277.
|
11 |
JUNG C H, CHOI J, KIM W S, et al. A nanopore-embedded graphitic carbon shell on silicon anode for high performance lithium ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(17): 8013-8020.
|
12 |
WU Z Y, LUO J, PENG J, et al. Rational architecture design of yolk/double-shells Si-based anode material with double buffering carbon layers for high performance lithium-ion battery[J]. Green Energy and Environment, 2021, 6: 517-527.
|
13 |
CHEN M Y, ZHANG Y C, DUAN P X, et al. Si/TiSi2/G@void@C composite with good electrochemical performance as anode of lithium ion batteries[J]. Applied Physics Letters, 2022, 121(2): 023901.
|
14 |
JI H S, LIU Z J, LI X, et al. Recycling silicon waste from the photovoltaic industry to prepare yolk-shell Si@void@C anode materials for lithium-ion batteries[J]. Processes, 2023, 11(6): 1764.
|
15 |
LIU R P, SHEN C, DONG Y, et al. Sandwich-like CNTs/Si/C nanotubes as high performance anode materials for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(30): 14797-14804.
|
16 |
ZHU J, WANG T, FAN F R, et al. Atomic-scale control of silicon expansion space as ultrastable battery anodes[J]. ACS Nano, 2016, 10(9): 8243-8251.
|
17 |
WU J X, QIN X Y, MIAO C, et al. A honeycomb-cobweb inspired hierarchical core–shell structure design for electrospun silicon/carbon fibers as lithium-ion battery anodes[J]. Carbon, 2016, 98: 582-591.
|
18 |
XU Q, LI J Y, SUN J K, et al. Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes[J]. Advanced Energy Materials, 2017, 7(3): 1601481.
|
19 |
SU H P, LI X R, LIU C W, et al. Scalable synthesis of micrometer-sized porous silicon/carbon composites for high-stability lithium-ion battery anodes[J]. Chemical Engineering Journal, 2023, 451: 138394.
|
20 |
YANG S H, KIM J K, JUNG D S, et al. Facile fabrication of Si-embedded amorphous carbon@graphitic carbon composite microspheres via spray drying as high-performance lithium-ion battery anodes[J]. Applied Surface Science, 2022, 606: 154799.
|
21 |
CHO M K, YOU S J, WOO J G, et al. Anomalous Si-based composite anode design by densification and coating strategies for practical applications in Li-ion batteries[J]. Composites Part B: Engineering, 2021, 215: 108799.
|
22 |
CHOI Y J, LEE G W, KIM Y H, et al. Microspherical assembly of selectively pyridinic N-doped nanoperforated graphene for stable Li-metal anodes: Synergistic coupling of lithiophilic pyridinic N on perforation edges and low tortuosity via graphene nanoperforation[J]. Chemical Engineering Journal, 2023, 455: 140770.
|
23 |
TIAN L L, WEI X Y, ZHUANG Q C, et al. Bottom-up synthesis of nitrogen-doped graphene sheets for ultrafast lithium storage[J]. Nanoscale, 2014, 6(11): 6075-6083.
|
24 |
JU Z C, LI P Z, MA G Y, et al. Few layer nitrogen-doped graphene with highly reversible potassium storage[J]. Energy Storage Materials, 2018, 11: 38-46.
|