1 |
ZHANG S X, KONG L C, LI Y, et al. Fundamentals of Li/CFx battery design and application [J]. Energy & Environmental Science, 2023, 16(5): 1907-42.
|
2 |
ZHU H J, GAVRIL M, FENG L, et al. Li/CFx Medical Battery Development [J]. ECS Transactions, 2008, 11(32): 11-17.
|
3 |
YANG W, DAI Y, CAI S, et al. Graphene/Au composite paper as flexible current collector to improve electrochemical performances of CFx cathode [J]. Journal of Power Sources, 2014, 255: 37-42.
|
4 |
YAN K, ZOU Y, BAO L X, et al. Fluorinated N,P co-doped biomass carbon with high-rate performance as cathode material for lithium/fluorinated carbon battery [J]. Rare Metals, 2024: 1-11.
|
5 |
ZHANG Q, D'ASTORG S, XIAO P, et al. Carbon-coated fluorinated graphite for high energy and high power densities primary lithium batteries [J]. Journal of Power Sources, 2010, 195(9): 2914-2917.
|
6 |
LUO Z, LUO S, YANG M, et al. Revealing the Mechano‐Electrochemical Coupling Behavior and Discharge Mechanism of Fluorinated Carbon Cathodes toward High‐Power Lithium Primary Batteries [J]. Small, 2023,2305980 (1-15).
|
7 |
GUéRIN K, DUBOIS M, HOUDAYER A, et al. Applicative performances of fluorinated carbons through fluorination routes: A review [J]. Journal of Fluorine Chemistry, 2012, 134: 11-17.
|
8 |
JIANG S, HUANG P, LU J, et al. The electrochemical performance of fluorinated ketjenblack as a cathode for lithium/fluorinated carbon batteries [J]. RSC Advances, 2021, 11(41): 25461-25470.
|
9 |
PENG C, LI Y, YAO F, et al. Ultrahigh-energy-density fluorinated calcinated macadamia nut shell cathodes for lithium/fluorinated carbon batteries [J]. Carbon, 2019, 153: 783-791.
|
10 |
KONG L, LI Y, PENG C, et al. Defective nano-structure regulating C-F bond for lithium/fluorinated carbon batteries with dual high-performance [J]. Nano Energy, 2022, 104: 107905.
|
11 |
LAM P, YAZAMI R. Physical characteristics and rate performance of (CFx)n (0.33<x<0.66) in lithium batteries [J]. Journal of Power Sources, 2006, 153(2): 354-359.
|
12 |
MA J, LIU Y, PENG Y, et al. UV-radiation inducing strategy to tune fluorinated carbon bonds delivering the high-rate Li/CFx primary batteries [J]. Composites Part B: Engineering, 2022, 230: 109494.
|
13 |
DAI Y, FANG Y, CAI S, et al. Surface Modified Pinecone Shaped Hierarchical Structure Fluorinated Mesocarbon Microbeads for Ultrafast Discharge and Improved Electrochemical Performances [J]. Journal of The Electrochemical Society, 2017, 164(2): A1-A7.
|
14 |
DAI Y, CAI S, WU L, et al. Surface modified CFx cathode material for ultrafast discharge and high energy density [J]. Journal of Materials Chemistry A, 2014, 2(48): 20896-20901.
|
15 |
YIN Y. Ultralow‐Temperature Li/CF x Batteries Enabled by Fast‐Transport and Anion‐Pairing Liquefied Gas Electrolytes [J]. Advanced materials (Weinheim), 35(3): 2207932.
|
16 |
WANG X, SONG Z, WU H, et al. Anion Donicity of Liquid Electrolytes for Lithium Carbon Fluoride Batteries [J]. Angewandte Chemie International Edition, 2022, 61(47): e202211623.
|
17 |
YU J, WANG D, WANG G X, et al. Breaking the Electronic Conductivity Bottleneck of Manganese Oxide Family for High-Power Fluorinated Graphite Composite Cathode by Ligand-Field High-Dimensional Constraining Strategy [J]. ADVANCED MATERIALS, 2023, 35(8): 2209210.
|
18 |
Li L, Wu R, Ma H, et al. Toward the High‐Performance Lithium Primary Batteries by Chemically Modified Fluorinate Carbon with δ‐MnO2[J]. Small, 2023, 19(26): 2300762.
|
19 |
LI Y, WU X, LIU C, et al. Fluorinated multi-walled carbon nanotubes as cathode materials of lithium and sodium primary batteries: effect of graphitization of carbon nanotubes [J]. Journal of Materials Chemistry A, 2019, 7(12): 7128-7137.
|
20 |
阳晓霞, 段征, 金晶龙, et al. 高比能氟化碳材料及Li/CF_x电池的特性研究 [J]. 电源技术, 2018, 42(08): 1161-2+70.
|
|
YANG X X, DUAN Z, JIN J L, et al. Performance research of polycarbon mono-fluride and Li/CFx cell [J]. Chinese Journal of Power Sources, 2018, 42(08): 1161-2+70.
|
21 |
卢立丽, 王松蕊. 锂氟化碳电池放电热效应的模拟研究 [J]. 电源技术, 2016, 40(05): 1098-1102.
|
|
LU L L, WANG S R. Studies on thermal effects during discharging of lithium carbon fluoride cellsby simulation [J]. Chinese Journal of Power Sources, 2016, 40(05): 1098-1102.
|
22 |
LIU W, YAN T F, GUO R, et al. Analysis of electrochemical performance of lithium carbon fluorides primary batteries after storage [J]. Journal of Materiomics, 2021, 7(6): 1225-1232.
|
23 |
ZHOU R, LI Y, FENG Y, et al. The electrochemical performances of fluorinated hard carbon as the cathode of lithium primary batteries [J]. Composites Communications, 2020, 21: 100396.
|
24 |
GONG P, WANG Z, WANG J, et al. One-pot sonochemical preparation of fluorographene and selective tuning of its fluorine coverage [J]. Journal of Materials Chemistry, 2012, 22(33): 16950-16956.
|
25 |
LUO Z, LUO S, YANG M, et al. Revealing the Mechano-Electrochemical Coupling Behavior and Discharge Mechanism of Fluorinated Carbon Cathodes toward High-Power Lithium Primary Batteries [J]. Small, 2024, 20(7): 2305980.
|
26 |
张红梅, 甘潦, 王开琼, et al. 纳米Ag改性方式对锂氟化碳电池性能的影响 [J]. 电源技术, 2023, 47(09): 1164-1168.
|
|
ZHANG H M, GAN L, WANG K Q, et al. Effect of nano-Ag modidication methods on performance of lithium fluride carbon batteries [J]. Chinese Journal of Power Sources, 2023, 47(09): 1164-1168.
|
27 |
LIU W, MA S, LI Y, et al. Electrochemical impedance spectroscopy analysis for lithium carbon fluorides primary battery [J]. Journal of Energy Storage, 2023, 68: 107699.
|
28 |
ZHONG G M, CHEN H X, CHENG Y, et al. Insights into the lithiation mechanism of CFx by a joint high-resolution 19F NMR, in situTEM and 7Li NMR approach [J]. Journal of Materials Chemistry A, 2019, 7(34): 19793-19799.
|
29 |
LI Q, XUE W R, SUN X R, et al. Gaseous electrolyte additive BF3 for high-power Li/CFx primary batteries [J]. Energy Storage Materials, 2021, 38: 482-488.
|
30 |
SROUT M, CARBONI M, GONZALEZ J-A, et al. Insights into the Importance of Native Passivation Layer and Interface Reactivity of Metallic Lithium by Electrochemical Impedance Spectroscopy [J]. Small, 2023, 19(7): 2206252.
|