储能科学与技术 ›› 2024, Vol. 13 ›› Issue (11): 3906-3920.doi: 10.19799/j.cnki.2095-4239.2024.0428
王化宁(), 薛新杰, 张勉恒, 王嘉浩, 杨斌, 赵长颖()
收稿日期:
2024-05-14
修回日期:
2024-05-30
出版日期:
2024-11-28
发布日期:
2024-11-27
通讯作者:
赵长颖
E-mail:huaning.wang@sjtu.edu.cn;changying.zhao@sjtu.edu.cn
作者简介:
王化宁(1999—),男,硕士研究生,研究方为先进储热技术,E-mail:huaning.wang@sjtu.edu.cn;
基金资助:
Huaning WANG(), Xinjie XUE, Mianheng ZHANG, Jiahao WANG, Bin YANG, Changying ZHAO()
Received:
2024-05-14
Revised:
2024-05-30
Online:
2024-11-28
Published:
2024-11-27
Contact:
Changying ZHAO
E-mail:huaning.wang@sjtu.edu.cn;changying.zhao@sjtu.edu.cn
摘要:
卡诺电池作为高效、环保、灵活且可靠的能源存储器件,且有显著的应用潜力。本工作设计了一套堆积床储热装置,并将其整合到20 kW/5 h的卡诺电池实验系统中。通过采用3种分层放置的不同材料,实现了梯级储放热。经过实验验证的二维轴对称模拟进一步揭示了相变间隔和孔隙率对梯级相变堆积床储热(CPB-TES)系统的影响。为了提高能量效率并保持卡诺电池中的压缩机和膨胀机稳定运行,研究过程中还在系统后端添加了换热器以回收CPB-TES的余热。结果表明,提高入口温度和流量能加速相变过程并提高充放电速率,但也会增加能量损失。相变间隔越小,相变材料的平台期越显著,发生相变的过程越短暂。孔隙率为0.4的堆积床相比孔隙率为0.6的堆积床,不仅储能密度有所提高,而且流体和相变材料换热也更加充分。在最小进口流量120 m3/h和最高进口温度331 ℃的实验条件下,通过回收余热,系统的往返效率最高可达70.31%。本工作对卡诺电池中的关键装置进行深入研究,进而对整体系统进行优化,为卡诺电池高效而广泛的规模化应用提供了一定的参考。
中图分类号:
王化宁, 薛新杰, 张勉恒, 王嘉浩, 杨斌, 赵长颖. 卡诺电池堆积床潜热储热装置的实验和数值研究[J]. 储能科学与技术, 2024, 13(11): 3906-3920.
Huaning WANG, Xinjie XUE, Mianheng ZHANG, Jiahao WANG, Bin YANG, Changying ZHAO. Experimental and numerical investigation of a packed bed latent heat storage system for Carnot batteries[J]. Energy Storage Science and Technology, 2024, 13(11): 3906-3920.
1 | OLABI A G, ALI ABDELKAREEM M. Renewable energy and climate change[J]. Renewable and Sustainable Energy Reviews, 2022, 158: 112111. DOI: 10.1016/j.rser.2022.112111. |
2 | ZHAO C Y, JU S H, XUE Y, et al. China's energy transitions for carbon neutrality: Challenges and opportunities[J]. Carbon Neutrality, 2022, 1(1): 7. DOI: 10.1007/s43979-022-00010-y. |
3 | ZHANG H Y, GAO S Z, ZHOU P. Role of digitalization in energy storage technological innovation: Evidence from China[J]. Renewable and Sustainable Energy Reviews, 2023, 171: 113014. DOI: 10.1016/j.rser.2022.113014. |
4 | LIANG T, VECCHI A, KNOBLOCH K, et al. Key components for Carnot battery: Technology review, technical barriers and selection criteria[J]. Renewable and Sustainable Energy Reviews, 2022, 163: 112478. DOI: 10.1016/j.rser.2022.112478. |
5 | ZHANG M Y, SHI L F, HU P, et al. Carnot battery system integrated with low-grade waste heat recovery: Toward high energy storage efficiency[J]. Journal of Energy Storage, 2023, 57: 106234. DOI: 10.1016/j.est.2022.106234. |
6 | VECCHI A, KNOBLOCH K, LIANG T, et al. Carnot Battery development: A review on system performance, applications and commercial state-of-the-art[J]. Journal of Energy Storage, 2022, 55: 105782. DOI: 10.1016/j.est.2022.105782. |
7 | XUE X J, ZHAO Y, ZHAO C Y. Multi-criteria thermodynamic analysis of pumped-thermal electricity storage with thermal integration and application in electric peak shaving of coal-fired power plant[J]. Energy Conversion and Management, 2022, 258: 115502. DOI: 10.1016/j.enconman.2022.115502. |
8 | ZHANG H, WANG L, LIN X P, et al. Combined cooling, heating, and power generation performance of pumped thermal electricity storage system based on Brayton cycle[J]. Applied Energy, 2020, 278: 115607. DOI: 10.1016/j.apenergy.2020.115607. |
9 | ZHAO C Y, YAN J, TIAN X K, et al. Progress in thermal energy storage technologies for achieving carbon neutrality[J]. Carbon Neutrality, 2023, 2(1): 10. DOI: 10.1007/s43979-023-00050-y. |
10 | AMEEN M T, MA Z W, SMALLBONE A, et al. Demonstration system of pumped heat energy storage (PHES) and its round-trip efficiency[J]. Applied Energy, 2023, 333: 120580. DOI: 10.1016/j.apenergy.2022.120580. |
11 | DUMONT O, FRATE G F, PILLAI A, et al. Carnot battery technology: A state-of-the-art review[J]. Journal of Energy Storage, 2020, 32: 101756. DOI: 10.1016/j.est.2020.101756. |
12 | ZHAO Y, ZHAO C Y, MARKIDES C N, et al. Medium- and high-temperature latent and thermochemical heat storage using metals and metallic compounds as heat storage media: A technical review[J]. Applied Energy, 2020, 280: 115950. DOI: 10.1016/j.apenergy.2020.115950. |
13 | XUE X J, ZHAO C Y. Transient behavior and thermodynamic analysis of Brayton-like pumped-thermal electricity storage based on packed-bed latent heat/cold stores[J]. Applied Energy, 2023, 329: 120274. DOI: 10.1016/j.apenergy.2022.120274. |
14 | ALBERT M, MA Z W, BAO H S, et al. Operation and performance of Brayton pumped thermal energy storage with additional latent storage[J]. Applied Energy, 2022, 312: 118700. DOI: 10.1016/j.apenergy.2022.118700. |
15 | WU M, XU C, HE Y L. Cyclic behaviors of the molten-salt packed-bed thermal storage system filled with cascaded phase change material capsules[J]. Applied Thermal Engineering, 2016, 93: 1061-1073. DOI: 10.1016/j.applthermaleng.2015.10.014. |
16 | TAFONE A, PILI R, PIHL ANDERSEN M, et al. Dynamic modelling of a compressed heat energy storage (CHEST) system integrated with a cascaded phase change materials thermal energy storage[J]. Applied Thermal Engineering, 2023, 226: 120256. DOI: 10.1016/j.applthermaleng.2023.120256. |
17 | ZHAO Y, SONG J, ZHAO C Y, et al. Thermodynamic investigation of latent-heat stores for pumped-thermal energy storage[J]. Journal of Energy Storage, 2022, 55: 105802. DOI: 10.1016/j.est.2022.105802. |
18 | LI Q, LI C, DU Z, et al. A review of performance investigation and enhancement of shell and tube thermal energy storage device containing molten salt based phase change materials for medium and high temperature applications[J]. Applied Energy, 2019, 255: 113806. DOI: 10.1016/j.apenergy.2019.113806. |
19 | NAVARRETE N, MONDRAGÓN R, WEN D S, et al. Thermal energy storage of molten salt–based nanofluid containing nano-encapsulated metal alloy phase change materials[J]. Energy, 2019, 167: 912-920. DOI: 10.1016/j.energy.2018.11.037. |
20 | REDDY B D, RAHUL S V S, HARISH R. Impact of fin number and nanoparticle size on molten salt NanoPCM melting in finned annular space[J]. Journal of Energy Storage, 2023, 72: 108705. DOI: 10.1016/j.est.2023.108705. |
21 | XIONG Y X, WANG Z Y, WU Y T, et al. Performance enhancement of bromide salt by nano-particle dispersion for high-temperature heat pipes in concentrated solar power plants[J]. Applied Energy, 2019, 237: 171-179. DOI: 10.1016/j.apenergy.2019.01.026. |
22 | WANG H R, RAN X F, ZHONG Y J, et al. Ternary chloride salt–porous ceramic composite as a high-temperature phase change material[J]. Energy, 2022, 238: 121838. DOI: 10.1016/j.energy.2021.121838. |
23 | SHENG N, GE Y F, GUO Y Q, et al. Macro-encapsulated metallic phase change material over 1000 ℃ for high-temperature thermal storage[J]. Solar Energy Materials and Solar Cells, 2022, 239: 111655. DOI: 10.1016/j.solmat.2022.111655. |
24 | ALAM T E, DHAU J S, GOSWAMI D Y, et al. Macroencapsulation and characterization of phase change materials for latent heat thermal energy storage systems[J]. Applied Energy, 2015, 154: 92-101. DOI: 10.1016/j.apenergy.2015.04.086. |
25 | LI M J, LI M J, TONG Z X, et al. Optimization of the packed-bed thermal energy storage with cascaded PCM capsules under the constraint of outlet threshold temperature[J]. Applied Thermal Engineering, 2021, 186: 116473. DOI: 10.1016/j.applthermaleng. 2020.116473. |
26 | MAO Q J, ZHANG Y M. Thermal energy storage performance of a three-PCM cascade tank in a high-temperature packed bed system[J]. Renewable Energy, 2020, 152: 110-119. DOI: 10.1016/j.renene.2020.01.051. |
27 | KHOR J O, SZE J Y, LI Y, et al. Overcharging of a cascaded packed bed thermal energy storage: Effects and solutions[J]. Renewable and Sustainable Energy Reviews, 2020, 117: 109421. DOI: 10.1016/j.rser.2019.109421. |
28 | BASHIRI MOUSAVI S, ADIB M, SOLTANI M, et al. Transient thermodynamic modeling and economic analysis of an adiabatic compressed air energy storage (A-CAES) based on cascade packed bed thermal energy storage with encapsulated phase change materials[J]. Energy Conversion and Management, 2021, 243: 114379. DOI: 10.1016/j.enconman.2021.114379. |
29 | HE Z Y, WANG X H, DU X Z, et al. Experiments on comparative performance of water thermocline storage tank with and without encapsulated paraffin wax packed bed[J]. Applied Thermal Engineering, 2019, 147: 188-197. DOI: 10.1016/j.applthermaleng.2018.10.051. |
30 | TAFONE A, BORRI E, CABEZA L F, et al. Innovative cryogenic phase change material (PCM) based cold thermal energy storage for liquid air energy storage (LAES)-Numerical dynamic modelling and experimental study of a packed bed unit[J]. Applied Energy, 2021, 301: 117417. DOI: 10.1016/j.apenergy. 2021.117417. |
31 | LI M J, JIN B, MA Z, et al. Experimental and numerical study on the performance of a new high-temperature packed-bed thermal energy storage system with macroencapsulation of molten salt phase change material[J]. Applied Energy, 2018, 221: 1-15. DOI: 10.1016/j.apenergy.2018.03.156. |
32 | HE X B, QIU J, WANG W, et al. Optimization design and performance investigation on the cascaded packed-bed thermal energy storage system with spherical capsules[J]. Applied Thermal Engineering, 2023, 225: 120241. DOI: 10.1016/j.applthermaleng.2023.120241. |
33 | XUE X J, WANG H N, WANG J H, et al. Experimental and numerical investigation on latent heat/cold stores for advanced pumped-thermal energy storage[J]. Energy, 2024, 300: 131490. DOI: 10.1016/j.energy.2024.131490. |
34 | BONK A, SAU S, URANGA N, et al. Advanced heat transfer fluids for direct molten salt line-focusing CSP plants[J]. Progress in Energy and Combustion Science, 2018, 67: 69-87. DOI: 10.1016/j.pecs.2018.02.002. |
35 | FERNÁNDEZ A G, GOMEZ-VIDAL J, ORÓ E, et al. Mainstreaming commercial CSP systems: A technology review[J]. Renewable Energy, 2019, 140: 152-176. DOI: 10.1016/j.renene. 2019.03.049. |
36 | SHAMSI H, BOROUSHAKI M, GERAEI H. Performance evaluation and optimization of encapsulated cascade PCM thermal storage[J]. Journal of Energy Storage, 2017, 11: 64-75. DOI: 10.1016/j.est.2017.02.003. |
37 | WANG W, SHUAI Y, HE X B, et al. Influence of tank-to-particle diameter ratio on thermal storage performance of random packed-bed with spherical macro-encapsulated phase change materials[J]. Energy, 2023, 282: 128779. DOI: 10.1016/j.energy.2023.128779. |
38 | WU M, XU C, HE Y L. Dynamic thermal performance analysis of a molten-salt packed-bed thermal energy storage system using PCM capsules[J]. Applied Energy, 2014, 121: 184-195. DOI: 10.1016/j.apenergy.2014.01.085. |
39 | GONZO E E. Estimating correlations for the effective thermal conductivity of granular materials[J]. Chemical Engineering Journal, 2002, 90(3): 299-302. DOI: 10.1016/S1385-8947(02)00121-3. |
40 | KENISARIN M, MAHKAMOV K. Solar energy storage using phase change materials[J]. Renewable and Sustainable Energy Reviews, 2007, 11(9): 1913-1965. DOI: 10.1016/j.rser.2006.05.005. |
41 | BRÜCKNER S, LIU S, MIRÓ L, et al. Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies[J]. Applied Energy, 2015, 151: 157-167. DOI: 10.1016/j.apenergy.2015.01.147. |
[1] | 张云峰, 张学文, 钟威, 蒋杜伟, 陈泽伟, 张杰. 石蜡与低熔点合金双级联相变材料强化板翅式散热器换热性能的数值模拟[J]. 储能科学与技术, 2024, 13(5): 1460-1470. |
[2] | 刘鑫宇, 张安安, 廖长江. 不同支撑结构的固体氧化物燃料电池数值模拟分析[J]. 储能科学与技术, 2024, 13(5): 1710-1720. |
[3] | 张坎, 付婷, 王江波. 基于拓扑优化方法的蛛网散热结构均温性研究[J]. 储能科学与技术, 2024, 13(5): 1721-1730. |
[4] | 田禾青, 高艺明, 周俊杰. 二元氯化物熔盐纳米流体在方腔内熔化过程的数值模拟[J]. 储能科学与技术, 2024, 13(3): 1030-1035. |
[5] | 刘剑, 于立博, 吴振兴, 牟介刚. 基于风冷的锂离子电池充放电设备热特性影响研究[J]. 储能科学与技术, 2024, 13(3): 914-923. |
[6] | 廖琪, 曹小林, 邓谊柏, 杨耀林, 陈挺. 有轨电车超级电容模组液冷散热仿真分析[J]. 储能科学与技术, 2024, 13(2): 702-711. |
[7] | 李龙, 杨玺庆, 陶玲. 基于修正显热容法对相变储热系统蓄热行为的仿真分析[J]. 储能科学与技术, 2024, 13(11): 3939-3948. |
[8] | 张宇, 李敏霞, 李君, 颜利波, 张家兴, 王志朋, 田华. 面向数据中心液冷装置余热回收的卡诺电池储能系统可行性分析[J]. 储能科学与技术, 2024, 13(11): 3921-3929. |
[9] | 王海岚, 张晓宇, 国建鸿, 赵勇, 陈卓, 王一波. 基于中低温相变材料的管壳式储热单元传热性能数值分析[J]. 储能科学与技术, 2024, 13(10): 3376-3387. |
[10] | 陈智聪, 马跃, 杨华政, 王陈鹏, 刘颖隆, 叶豪, 刘佳伟, 许晓茹, 刘英丽, 陈皆成, 杜志伟, 梁波. 便携式装置中双凸台取电微管式固体氧化物燃料电池数值模拟及实验验证[J]. 储能科学与技术, 2024, 13(10): 3523-3533. |
[11] | 邱宇超, 陈佰爽, 陈诚, 钱瑞鹏. 锂离子电池材料准静态压缩本构模型[J]. 储能科学与技术, 2024, 13(10): 3518-3522. |
[12] | 孛衍君, 薛新杰, 王化宁, 赵长颖. 基于相变堆积床的卡诺电池系统设计与实验研究[J]. 储能科学与技术, 2023, 12(9): 2823-2832. |
[13] | 栾凯夫, 蔡长焜, 谢满意, 张纯, 郑坤灿, 安胜利. 固体氧化物燃料电池气流和热场的宏观尺度数值模拟研究进展[J]. 储能科学与技术, 2023, 12(9): 2985-3002. |
[14] | 赵民, 李杨, 蔡婕, 康维斌, 刘磊. 民用建筑用毛细管相变蓄能罐性能的实验研究[J]. 储能科学与技术, 2023, 12(8): 2626-2637. |
[15] | 严景好, 李杰, 李一鸣, 孙小琴, 席丽娜, 姜昌伟. 基于梯度孔隙率金属泡沫的复合相变单元储热性能数值模拟[J]. 储能科学与技术, 2023, 12(8): 2424-2434. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||