1 |
DING D, LI X X, LAI S Y, et al. Enhancing SOFC cathode performance by surface modification through infiltration[J]. Energy & Environmental Science, 2014, 7(2): 552-575. DOI: 10.1039/C3EE42926A.
|
2 |
CHEEKATAMARLA P K, FINNERTY C M, DU Y H, et al. Advanced tubular solid oxide fuel cells with high efficiency for internal reforming of hydrocarbon fuels[J]. Journal of Power Sources, 2009, 188(2): 521-526. DOI: 10.1016/j.jpowsour. 2008.11.128.
|
3 |
RADUWAN N F, MUCHTAR A, et al. Challenges in fabricating solid oxide fuel cell stacks for portable applications: A short review[J]. International Journal of Integrated Engineering, 2018, 10(5): DOI: 10.30880/ijie.2018.10.05.013.
|
4 |
BUJALSKI W, DIKWAL C M, KENDALL K. Cycling of three solid oxide fuel cell types[J]. Journal of Power Sources, 2007, 171(1): 96-100. DOI: 10.1016/j.jpowsour.2007.01.029.
|
5 |
LAWLOR V. Review of the micro-tubular solid oxide fuel cell (Part II: Cell design issues and research activities)[J]. Journal of Power Sources, 2013, 240: 421-441. DOI: 10.1016/j.jpowsour. 2013.03.191.
|
6 |
邓笔财, 宋忠尚, 杜忠选, 等. 小型甲醇水蒸气重整制氢系统性能测试平台及其实验研究[J]. 石油化工, 2021, 50(9): 922-926. DOI: 10.3969/j.issn.1000-8144.2021.09.010.
|
|
DENG B C, SONG Z S, DU Z X, et al. Research on platform of miniaturized methanol reforming system and its experiments[J]. Petrochemical Technology, 2021, 50(9): 922-926. DOI: 10.3969/j.issn.1000-8144.2021.09.010.
|
7 |
宋巧玲. 复合氧化物型催化剂催化甲醇水蒸气重整制氢的性能研究[D]. 上海: 上海工程技术大学, 2020. DOI: 10.27715/d.cnki.gshgj.2020.000709.
|
|
SONG Q L. Study on the performance of composite oxide catalyst for hydrogen production from methanol steam reforming[D]. Shanghai: Shanghai University of Engineering Science, 2020. DOI: 10.27715/d.cnki.gshgj.2020.000709.
|
8 |
TAKEZAWA N, IWASA N. Steam reforming and dehydrogenation of methanol: Difference in the catalytic functions of copper and group VIII metals[J]. Catalysis Today, 1997, 36(1): 45-56. DOI: 10.1016/S0920-5861(96)00195-2.
|
9 |
HUANG Y H, WANG S F, TSAI A P, et al. Reduction behaviors and catalytic properties for methanol steam reforming of Cu-based spinel compounds CuX2O4 (X=Fe, Mn, Al, La)[J]. Ceramics International, 2014, 40(3): 4541-4551. DOI: 10.1016/j.ceramint. 2013.08.130.
|
10 |
SHEN J P, SONG C S. Influence of preparation method on performance of Cu/Zn-based catalysts for low-temperature steam reforming and oxidative steam reforming of methanol for H2 production for fuel cells[J]. Catalysis Today, 2002, 77(1/2): 89-98. DOI: 10.1016/S0920-5861(02)00235-3.
|
11 |
MOTEVALIAN SEYEDI A, HAGHIGHI M, RAHEMI N. Significant influence of cutting-edge plasma technology on catalytic properties and performance of CuO-ZnO-Al2O3-ZrO2 nanocatalyst used in methanol steam reforming for fuel cell grade hydrogen production[J]. Ceramics International, 2017, 43(8): 6201-6213. DOI: 10.1016/j.ceramint.2017.02.018.
|
12 |
CHENG Z Z, ZHOU W Q, LAN G J, et al. High-performance Cu/ZnO/Al2O3 catalysts for methanol steam reforming with enhanced Cu-ZnO synergy effect via magnesium assisted strategy[J]. Journal of Energy Chemistry, 2021, 63: 550-557. DOI: 10.1016/j.jechem.2021.08.025.
|
13 |
GUO C X, LI M, GUO W M, et al. Quench-induced Cu-ZnO catalyst for hydrogen production from methanol steam reforming[J]. Chemical Engineering Journal, 2024, 486: 150331. DOI: 10.1016/j.cej.2024.150331.
|
14 |
XENOS D P, HOFMANN P, PANOPOULOS K D, et al. Detailed transient thermal simulation of a planar SOFC (solid oxide fuel cell) using gPROMS™[J]. Energy, 2015, 81: 84-102. DOI: 10.1016/j.energy.2014.11.049.
|
15 |
AMIRI A, VIJAY P, TADÉ M O, et al. Planar SOFC system modelling and simulation including a 3D stack module[J]. International Journal of Hydrogen Energy, 2016, 41(4): 2919-2930. DOI: 10.1016/j.ijhydene.2015.12.076.
|
16 |
PIANKO-OPRYCH P, ZINKO T, JAWORSKI Z. Simulation of thermal stresses for new designs of microtubular solid oxide fuel cell stack[J]. International Journal of Hydrogen Energy, 2015, 40(42): 14584-14595. DOI: 10.1016/j.ijhydene.2015.05.164.
|
17 |
XU H R, CHEN B, TAN P, et al. Modeling of all porous solid oxide fuel cells[J]. Applied Energy, 2018, 219: 105-113. DOI: 10.1016/j.apenergy.2018.03.037.
|
18 |
HUSSAIN M M, LI X, DINCER I. A general electrolyte-electrode-assembly model for the performance characteristics of planar anode-supported solid oxide fuel cells[J]. Journal of Power Sources, 2009, 189(2): 916-928. DOI: 10.1016/j.jpowsour. 2008.12.121.
|
19 |
NI M, LEUNG M K H, LEUNG D Y C. Parametric study of solid oxide fuel cell performance[J]. Energy Conversion and Management, 2007, 48(5): 1525-1535. DOI: 10.1016/j.enconman.2006.11.016.
|
20 |
LI K P, ARAKI T, KAWAMURA T, et al. Numerical analysis of current efficiency distributions in a protonic ceramic fuel cell using Nernst-Planck-Poisson model[J]. International Journal of Hydrogen Energy, 2020, 45(58): 34139-34149. DOI: 10.1016/j.ijhydene.2020.09.143.
|
21 |
YAO Y, MA Y, WANG C P, et al. A cofuel channel microtubular solid oxide fuel/electrolysis cell[J]. Applied Energy, 2022, 327: 120010. DOI: 10.1016/j.apenergy.2022.120010.
|
22 |
YE H, MA Y, WANG C P, et al. A 3D printed redox-stable interconnector for bamboo-like tubular solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2023, 48(89): 34979-34986. DOI: 10.1016/j.ijhydene.2023.05.324.
|
23 |
马跃, 林蔚然, 姚越, 等. 便携式甲醇蒸汽重整制氢耦合固体氧化物燃料电池实验装置设计[J]. 实验技术与管理, 2022, 39(4): 173-177. DOI: 10.16791/j.cnki.sjg.2022.04.033.
|
|
MA Y, LIN W R, YAO Y, et al. Design of experimental instrument of combined microtubular solid oxide fuel cell with syngas reformed from methanol/steam mixture[J]. Experimental Technology and Management, 2022, 39(4): 173-177. DOI: 10.16791/j.cnki.sjg.2022.04.033.
|
24 |
FERGUSON J R, FIARD J M, HERBIN R. Three-dimensional numerical simulation for various geometries of solid oxide fuel cells[J]. Journal of Power Sources, 1996, 58(2): 109-122. DOI: 10.1016/0378-7753(95)02269-4.
|
25 |
HUSSAIN M M, LI X, DINCER I. A general electrolyte–electrode-assembly model for the performance characteristics of planar anode-supported solid oxide fuel cells[J]. Journal of Power Sources, 2009, 189(2): 916-928. DOI: 10.1016/j.jpowsour. 2008.12.121.
|
26 |
XU Q D, XIA L C, HE Q J, et al. Thermo-electrochemical modelling of high temperature methanol-fuelled solid oxide fuel cells[J]. Applied Energy, 2021, 291: 116832. DOI: 10.1016/j.apenergy.2021.116832.
|
27 |
FAN J H, SHI J X, ZHANG R Y, et al. Numerical study of a 20-cell tubular segmented-in-series solid oxide fuel cell[J]. Journal of Power Sources, 2023, 556: 232449. DOI: 10.1016/j.jpowsour. 2022.232449.
|
28 |
刘鑫宇, 张安安, 廖长江. 不同支撑结构的固体氧化物燃料电池数值模拟分析[J]. 储能科学与技术, 2024, 13(5): 1710-1720. DOI: 10.19799/j.cnki.2095-4239.2023.0855.
|
|
LIU X Y, ZHANG A A, LIAO C J. Numerical simulation analysis of solid oxide fuel cells with different support structures[J]. Energy Storage Science and Technology, 2024, 13(5): 1710-1720. DOI: 10.19799/j.cnki.2095-4239.2023.0855.
|
29 |
ILIEV I K, GIZZATULLIN A R, FILIMONOVA A A, et al. Numerical simulation of processes in an electrochemical cell using COMSOL multiphysics[J]. Energies, 2023, 16(21): 7265. DOI: 10.3390/en16217265.
|
30 |
FUNAHASHI Y, SHIMAMORI T, SUZUKI T, et al. Fabrication and characterization of components for cube shaped micro tubular SOFC bundle[J]. Journal of Power Sources, 2007, 163(2): 731-736. DOI: 10.1016/j.jpowsour.2006.10.002.
|
31 |
CHEN Y, LU M Y, YANG H Z, et al. 80 Hours operation of a tubular solid oxide fuel cell using propane/air[J]. Applied Energy, 2020, 272: 115099. DOI: 10.1016/j.apenergy.2020.115099.
|
32 |
HODJATI-PUGH O, ANDREWS J, DHIR A, et al. Analysis of current collection in micro-tubular solid oxide fuel cells: An empirical and mathematical modelling approach for minimised ohmic polarisation[J]. Journal of Power Sources, 2021, 494: 229780. DOI: 10.1016/j.jpowsour.2021.229780.
|
33 |
邵诚, 李浩, 朱文超, 等. 基于经济模型预测控制的燃料电池空气管理[J]. 电池, 2023, 53(5): 494-498. DOI: 10.19535/j.1001-1579.2023.05.006.
|
|
SHAO C, LI H, ZHU W C, et al. Economic model predictive control based on air management in fuel cells[J]. Dianchi(Battery Bimonthly), 2023, 53(5): 494-498. DOI: 10.19535/j.1001-1579. 2023.05.006.
|