储能科学与技术 ›› 2024, Vol. 13 ›› Issue (10): 3523-3533.doi: 10.19799/j.cnki.2095-4239.2024.0300

• 储能系统与工程 • 上一篇    下一篇

便携式装置中双凸台取电微管式固体氧化物燃料电池数值模拟及实验验证

陈智聪1(), 马跃1, 杨华政2, 王陈鹏1, 刘颖隆1, 叶豪1, 刘佳伟1, 许晓茹1, 刘英丽1, 陈皆成3, 杜志伟4, 梁波1,2()   

  1. 1.广东工业大学材料与能源学院,广东 广州 510006
    2.佛山索弗克氢能有限公司,广东 佛山 528000
    3.山东金泰临能源科技有限公司,山东 临沂 276041
    4.贵州兴锂新能源科技有限公司,贵州 凯里 556004
  • 收稿日期:2024-04-06 修回日期:2024-05-27 出版日期:2024-10-28 发布日期:2024-10-30
  • 通讯作者: 梁波 E-mail:zhicongc@foxmail.com;liangbo@gdut.edu.cn
  • 作者简介:陈智聪(1999—),男,硕士研究生,研究方向为固体氧化物燃料电池及其仿真,E-mail:zhicongc@foxmail.com
  • 基金资助:
    国家自然科学基金项目(52076047)

Numerical simulation and experimental verification of micro-tubular solid oxide fuel cell with double-convex platform current collector in portable device

Zhicong CHEN1(), Yue MA1, Huazheng YANG2, Chenpeng WANG1, Yinglong LIU1, Hao YE1, Jiawei LIU1, Xiaoru XU1, Yingli LIU1, Jiecheng CHEN3, Zhiwei DU4, Bo LIANG1,2()   

  1. 1.School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
    2.Foshan ISOFC Dynamic Co. , Ltd. , Foshan 528000, Guangdong, China
    3.Shandong JINTAILIN Energy Technology Co. , Ltd, Linyi 276041, Shandong, China
    4.Guizhou XINGLI New Energy Technology Co. , Ltd, Kaili 556004, Guizhou, China
  • Received:2024-04-06 Revised:2024-05-27 Online:2024-10-28 Published:2024-10-30
  • Contact: Bo LIANG E-mail:zhicongc@foxmail.com;liangbo@gdut.edu.cn

摘要:

本工作利用甲醇水蒸气重整制氢和管式固体氧化物燃料电池的各自优势,设计了一种甲醇水蒸气重整制氢(MSR)耦合微管式固体氧化物燃料电池(μT-SOFC)便携式制氢发电装置。使用COMSOL Multiphysics有限元仿真软件建立双凸台取电的μT-SOFC数学模型并验证模型(误差率小于5%)。仿真结果表明双凸台取电方式可高效地收集电流,不同电压下电池整体具有较小的温度差。MSR催化剂和阳极支撑型μT-SOFC分别使用浸渍法和挤出成型-浸浆工艺制备。借助场发射扫描电子显微镜和能谱分析技术表征MSR催化剂和μT-SOFC材料特性。借助气相色谱仪分析MSR产物气体成分,分析得到氢气体积分数接近70%。便携式装置使用步进电机控制甲醇水溶液进液流量,可获得不同的MSR气体产物体积流量,平均最高可达1163 mL/min。应用于装置中的μT-SOFC开路电压为0.96 V,最大输出功率密度为190 mW/cm2。电池在模拟实际使用4小时后,其电化学性能基本没有发生衰减。同时对此工况下的电池进行仿真,仿真结果表明,电池性能主要受MSR转化效率的限制,改变空气进气方向可提高电池输出功率。目前关于微管式燃料电池及其设备的应用研究甚少,本工作对μT-SOFC在便携式装置中的应用具有指导作用。

关键词: 甲醇水蒸气重整制氢, 微管式固体氧化物燃料电池, 数值模拟, 制氢发电装置

Abstract:

By leveraging the advantages of methanol steam reforming (MSR) for hydrogen production and tubular solid oxide fuel cells (SOFC), a portable hydrogen and power generation device was developed by integrating MSR with micro-tubular SOFC (μT-SOFC). A numerical model of μT-SOFC with a double-convex current collector was established and validated (error rate less than 5%) using COMSOL Multiphysics. The simulation results show that the double-convex platform current collector enhances the current collection efficiency while maintaining a small temperature difference at different voltages. MSR catalysts were prepared using the impregnation method, whereas the anode-supported μT-SOFC was fabricated using an extrusion forming-leaching process. The morphologies of the MSR catalysts and μT-SOFC were investigated using scanning electron microscopy and energy-dispersive X-ray spectroscopy. Gas chromatography of the MSR product revealed a hydrogen gas volume fraction approaching 70%. The portable device utilizes a stepper motor to control the inlet flow rate of methanol-water solution, achieving different volume flow rates of MSR gas products, with an average flow rate reaching up to 1163 mL/min. The μT-SOFC demonstrated an open circuit voltage of 0.96 V and a maximum output power density of 190 mW/cm2. After a simulated 4-hour operational test, there was no significant decline in electrochemical performance. Further simulations under these operating conditions showed that the cell performance was primarily limited by the MSR conversion efficiency. Additionally, adjusting the air inlet direction was found to enhance the output power. Currently, there are few studies on the application of μT-SOFC and related devices. This study provides guidance for the application of μT-SOFC in portable devices.

Key words: methanol steam reforming, micro-tubular solid oxide fuel cells, numerical simulation, hydrogen and power generation devices

中图分类号: