储能科学与技术

• •    

计及置信度理论的储能电站多目标鲁棒优化配置方法

王凯凯(), 梁燕, 高瑾(), 郑晓明, 赵海波, 荆永明   

  1. 国网山西省电力公司经济技术研究院,山西 太原 030024
  • 收稿日期:2024-07-25 修回日期:2024-08-01
  • 通讯作者: 高瑾 E-mail:wangkaikai510@163.com;gaojin_tju@126.com
  • 作者简介:王凯凯(1987—),男,硕士研究生,高级工程师,研究方向电网规划技术,E-mail:wangkaikai510@163.com
  • 基金资助:
    国网山西省电力公司科技项目(52053324000F)

Muti-objective robust optimization method for energy storage stations considering confidence theory

Kaikai WANG(), Yang LIANG, Jin GAO(), Xiaoming ZHENG, Haibo ZHAO, Yongming JING   

  1. State Grid Shanxi Electric Power Company Economic and Technological Research Institute, Taiyuan 030024, Shanxi, China
  • Received:2024-07-25 Revised:2024-08-01
  • Contact: Jin GAO E-mail:wangkaikai510@163.com;gaojin_tju@126.com

摘要:

新能源发电的间歇性和不稳定性对电网的稳定运行构成了严峻挑战,而储能技术的应用是解决这些问题的关键。因此,本文提出了一种基于置信度理论的新能源和储能电站多目标优化配置方法,旨在通过合理配置新能源电站和储能系统的容量,提高电网的稳定性和可靠性。首先,本文分析了高比例新能源接入电网带来的不确定性,建立了多目标鲁棒优化模型。接着,基于置信度理论,采用归一化正则约束方法生成多样化的帕累托解集,确保在不同不确定性情况下解的有效性和多样性。最后,通过后验样本分析对每个帕累托解进行长期性能模拟,评估其实际效果。在IEEE输电网上的算例验证结果显示,在较低的置信区间值下,系统总成本较低,但调节能力有限;而在较高的置信区间值下,系统调节能力显著提高,但总成本也相应增加。此外,系统在面对5%的负荷波动时,运行成本降低了15%,供电可靠性提高了10%。

关键词: 储能电站, 置信度理论, 多目标鲁棒优化, 归一化正则约束方法

Abstract:

The intermittency and instability of renewable energy generation pose significant challenges to the stable operation of power grids, and the application of energy storage technology is key to addressing these issues. Therefore, a multi-objective optimization method for the capacity configuration of renewable energy and energy storage stations based on confidence theory is developed in this paper, aiming to enhance grid stability and reliability. First, the uncertainties brought by the high proportion of renewable energy integration into the grid are analyzed and a multi-objective robust optimization model is established. Then, based on confidence theory, a normalized regularization constraint method is developed to generate a diverse Pareto solution set, ensuring the validity and diversity of solutions under different uncertainties. Finally, the long-term performance of each Pareto solution is simulated through posterior sample analysis to evaluate its practical effect. Case studies on the IEEE transmission network show that at lower confidence interval values, the total system cost is lower but the adjustment capability is limited; while at higher confidence interval values, the system's adjustment capability significantly improves, but the total cost also increases. Additionally, when facing a 5% load fluctuation, the system's operating cost is reduced by 15%, and power supply reliability is increased by 10%.

Key words: Energy storage stations, confidence theory, multi-objective robust optimization, normalized regular constraints

中图分类号: