储能科学与技术 ›› 2024, Vol. 13 ›› Issue (11): 4030-4039.doi: 10.19799/j.cnki.2095-4239.2024.0551

• 储能系统与工程 • 上一篇    下一篇

基于YNd变压器-多端口变换器的铁路混合储能系统功率调控策略

李志杰(), 罗忠游, 南东亮, 唐君毅   

  1. 国网新疆电力有限公司电力科学研究院,新疆 乌鲁木齐 830011
  • 收稿日期:2024-06-18 修回日期:2024-07-25 出版日期:2024-11-28 发布日期:2024-11-27
  • 通讯作者: 李志杰 E-mail:f_1232024@126.com
  • 作者简介:李志杰(1994—),男,本科,工程师,研究方向为牵引供电系统能量管理与控制,E-mail:f_1232024@126.com
  • 基金资助:
    国网新疆电力有限公司科技项目(5230DK230014)

Power control strategy of railway hybrid energy storage system based on YNd transformer-multiport converter

Zhijie LI(), Zhongyou LUO, Dongliang NAN, Junyi TANG   

  1. State Grid Xinjiang Electric Power Co. , Ltd. , Electric Power Research Institute, Urumqi 830011, Xinjiang, China
  • Received:2024-06-18 Revised:2024-07-25 Online:2024-11-28 Published:2024-11-27
  • Contact: Zhijie LI E-mail:f_1232024@126.com

摘要:

为提升电力机车制动产生的大量再生制动能量的回收利用率,同时兼顾补偿单相牵引供电系统在电网中引起的电压不平衡问题,本文提出了一种基于YNd变压器-多端口变换器的铁路混合储能系统(YNd-multiport converter based railway hybrid energy storage system, YNd-MC-RHESS)。首先,分析了YNd-MC-RHESS的工作原理及其工作模式。其次,以提高再生制动能量的利用率为主要目标,基于非线性电流控制,提出了多端口变换器的功率优化调控策略,在交流/直流(AC/DC)变换器中引入非线性控制,提升了多端口变换器的响应速度与混合储能的能量分配效率。最后,基于典型工况,通过半实物动态模拟验证了所提控制策略可以调度功率在不同端口间按需转移,同时不同介质储能功率可合理分配与存储释放。实验结果表明,混合储能装置投入后,再生制动能量的利用率为93.67%,实现了再生制动能量的高效利用。

关键词: 牵引供电系统, 再生制动能量, 混合储能, 无源控制

Abstract:

To enhance the utilization of substantial regenerative braking energy generated by electric locomotives and address voltage unbalance issues caused by single-phase traction power supply systems in the grid, this paper proposes a YNd-multiport based railway hybrid energy storage system (YNd-MC-RHESS). The operational principles and modes of the YNd-MC-RHESS are first analyzed. A power optimization control strategy for the multiport converter is then developed with the primary goal of maximizing regenerative braking energy utilization. This strategy integrates nonlinear current control to enhance the converter's response time and improve the energy allocation efficiency within the hybrid storage system. Finally, the proposed control strategy is validated using Hardware-in-the-Loop (HIL) dynamic simulations under typical operational scenarios, demonstrating its capability to dynamically manage power transfers between different ports and ensure equitable energy allocation and release across various storage media. Experimental results reveal that, following the deployment of the hybrid storage system, the utilization rate of regenerative braking energy reaches 93.67%, thereby achieving efficient use of this valuable energy resource.

Key words: traction power supply system, regenerative braking energy, hybrid energy storage, passive control

中图分类号: