储能科学与技术 ›› 2024, Vol. 13 ›› Issue (11): 4040-4052.doi: 10.19799/j.cnki.2095-4239.2024.0516

• 储能系统与工程 • 上一篇    下一篇

城市轨道交通混合储能系统无源性协同控制方法

时珊珊1(), 王凯2, 张宇1, 张开宇1, 张珂宁2, 王育飞2, 王雅妮2   

  1. 1.国网上海市电力公司,上海 200031
    2.上海电力大学,上海 200090
  • 收稿日期:2024-06-07 修回日期:2024-07-23 出版日期:2024-11-28 发布日期:2024-11-27
  • 通讯作者: 时珊珊 E-mail:evdataanalysis@163.com
  • 作者简介:时珊珊(1985—),女,博士,高级工程师,研究方向为电力系统分析、轨道交通混合储能技术,E-mail:evdataanalysis@163.com
  • 基金资助:
    国家自然科学基金(52207025);国网上海市电力公司项目(B3094023000W)

Collaborative passivity-based control method for hybrid energy storage systems in urban rail transit

Shanshan SHI1(), Kai WANG2, Yu ZHANG1, Kaiyu ZHANG1, Kening ZHANG2, Yufei WANG2, Yani WANG2   

  1. 1.State Grid Shanghai Municipal Electric Power Company, Shanghai 200031, China
    2.Shanghai University of Electric Power, Shanghai 200090, China
  • Received:2024-06-07 Revised:2024-07-23 Online:2024-11-28 Published:2024-11-27
  • Contact: Shanshan SHI E-mail:evdataanalysis@163.com

摘要:

为解决城市轨道交通列车频繁启停引起的牵引网电压波动问题,针对由超级电容和电池组成的混合储能系统,本文提出了基于集合经验模态分解的无源性协同控制方法,从而平抑网侧电压波动,实现再生制动能量回收,降低城市轨道交通能耗。利用集合经验模态分解方法求取混合储能系统多个本征模态函数,对每个本征模态函数瞬时频率曲线进行Hilbert变换,精确重构高频、低频分量,提升超级电容和电池功率期望轨迹精度。针对混合储能系统多变量、强耦合、非线性特性,在dq坐标下建立双线性模型,实现状态变量与控制变量同步线性变换,设计全局渐近稳定的无源性控制器,使系统存在外部不确定性扰动情形时始终保持超级电容和锂电池功率期望轨迹同步快速跟踪,达成协同控制目标。基于MATLAB的仿真结果表明,所提方法既实现了超级电容和锂电池长寿命协同运行,又能满足城市轨道交通再生制动能量回收利用需求,具有响应快速、稳定性好的特点。

关键词: 城市轨道交通, 混合储能系统, 集合经验模态分解, 无源性控制

Abstract:

To regulate voltage fluctuations in urban rail transit traction systems caused by the frequent acceleration and deceleration of trains, this study proposes a passivity-based collaborative control method utilizing ensemble empirical mode decomposition for a hybrid energy storage system (HESS) composed of supercapacitors and batteries. This method enables the recovery of regenerative braking energy and reduces the overall energy consumption of urban rail transit systems. The ensemble empirical mode decomposition technique is employed to extract multiple intrinsic mode functions of the HESS, allowing precise reconstruction of high-frequency and low-frequency components through the instantaneous frequency curve of each intrinsic mode function processed by the Hilbert transform, thereby enhancing the power trajectory accuracy for both supercapacitors and batteries. To address the multi-variable, strongly coupled, and nonlinear nature of the HESS, a bilinear model is developed in dq coordinates, facilitating synchronous linear transformation of state and control variables. A globally asymptotically stable passivity-based controller is then proposed to ensure synchronized and rapid tracking of desired power trajectories, achieving collaborative control even under external uncertainties. Simulation results using MATLAB demonstrate that the proposed method ensures long-term cooperative operation of supercapacitors and batteries, effectively meeting the demands for regenerative braking energy recovery and utilization in urban rail transit. The proposed approach offers advantages such as rapid response and robust stability.

Key words: urban rail transit, hybrid energy storage system, ensemble empirical mode decomposition, passivity-based control

中图分类号: