1 |
LU J H, XIONG R, TIAN J P, et al. Battery degradation prediction against uncertain future conditions with recurrent neural network enabled deep learning[J]. Energy Storage Materials, 2022, 50: 139-151.
|
2 |
胡振恺, 雷博, 李勇琦, 等. 储能用锂离子电池安全性测试与评估方法比较[J]. 储能科学与技术, 2022, 11(5): 1650-1656.
|
|
HU Z K, LEI B, LI Y Q, et al. Comparative study on safety test and evaluation methods of lithium-ion batteries for energy storage[J]. Energy Storage Science and Technology, 2022, 11(5): 1650-1656.
|
3 |
戴俊彦, 夏明超, 陈奇芳. 基于双重注意力机制的电池SOH估计和RUL预测编解码模型[J]. 电力系统自动化, 2023, 47(6): 168-177.
|
|
DAI J Y, XIA M C, CHEN Q F. Encoding and decoding model of state of health estimation and remaining useful life prediction for batteries based on dual-stage attention mechanism[J]. Automation of Electric Power Systems, 2023, 47(6): 168-177.
|
4 |
SHEN S Q, LIU B C, ZHANG K, et al. Toward fast and accurate SOH prediction for lithium-ion batteries[J]. IEEE Transactions on Energy Conversion, 2021, 36(3): 2036-2046.
|
5 |
徐乐, 邓忠伟, 谢翌, 等. 锂离子电池高精度机理建模、参数辨识与寿命预测研究进展[J]. 机械工程学报, 2022, 58(22): 19-36.
|
|
XU L, DENG Z W, XIE Y, et al. Review on research progress in high-fidelity modeling, parameter identification and lifetime prognostics of lithium-ion battery[J]. Journal of Mechanical Engineering, 2022, 58(22): 19-36.
|
6 |
王瑞洁, 惠周利, 杨明. 基于间接健康指标的高斯过程回归对锂电池SOH预测[J]. 储能科学与技术, 2023, 12(2): 560-569.
|
|
WANG R J, HUI Z L, YANG M. Gaussian process regression based on indirect health indicators for SOH estimation of lithium battery[J]. Energy Storage Science and Technology, 2023, 12(2): 560-569.
|
7 |
MA G J, XU S P, YANG T, et al. A transfer learning-based method for personalized state of health estimation of lithium-ion batteries[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, PP(99): 1-11.
|
8 |
舒星, 刘永刚, 申江卫, 等. 基于改进最小二乘支持向量机与Box-Cox变换的锂离子电池容量预测[J]. 机械工程学报, 2021, 57(14): 118-128.
|
|
SHU X, LIU Y G, SHEN J W, et al. Capacity prediction for lithium-ion batteries based on improved least squares support vector machine and box-cox transformation[J]. Journal of Mechanical Engineering, 2021, 57(14): 118-128.
|
9 |
何冰琛, 杨薛明, 王劲松, 等. 基于PCA-GPR的锂离子电池剩余使用寿命预测[J]. 太阳能学报, 2022, 43(5): 484-491.
|
|
HE B C, YANG X M, WANG J S, et al. Prediction of remaining useful life of lithium-ion batteries based on pca-gpr[J]. Acta Energiae Solaris Sinica, 2022, 43(5): 484-491.
|
10 |
郑伟彦, 吴靖, 许杰, 等. 基于RVM-PF融合算法的锂离子电池剩余使用寿命预测[J]. 浙江电力, 2021, 40(4): 54-64.
|
|
ZHENG W Y, WU J, XU J, et al. Prediction of remaining useful life of lithium-ion battery based on RVM-PF algorithm[J]. Zhejiang Electric Power, 2021, 40(4): 54-64.
|
11 |
TIAN J P, XIONG R, SHEN W X, et al. Deep neural network battery charging curve prediction using 30 points collected in 10 Min[J]. Joule, 2021, 5(6): 1521-1534.
|
12 |
梁海峰, 袁芃, 高亚静. 基于CNN-Bi-LSTM网络的锂离子电池剩余使用寿命预测[J]. 电力自动化设备, 2021, 41(10): 213-219.
|
|
LIANG H F, YUAN P, GAO Y J. Remaining useful life prediction of lithium-ion battery based on CNN-Bi-LSTM network[J]. Electric Power Automation Equipment, 2021, 41(10): 213-219.
|
13 |
PHAM T, LE T, DANG D, et al. ARNS: A data-driven approach for SoH estimation of lithium-ion battery using nested sequence models with considering relaxation effect[J]. IEEE Access, 2022, 10: 117067-117083.
|
14 |
王朋凯, 张新燕, 张光昊. 基于ResNet-Bi-LSTM-Attention的锂离子电池剩余使用寿命预测[J]. 储能科学与技术, 2023, 12(4): 1215-1222.
|
|
WANG P K, ZHANG X Y, ZHANG G H. Remaining useful life prediction of lithium-ion batteries based on ResNet-Bi-LSTM-Attention model[J]. Energy Storage Science and Technology, 2023, 12(4): 1215-1222.
|
15 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention Is All You Need[M]. arXiv, 2017.
|
16 |
刘芊彤, 邢远秀. 基于VMD-PSO-GRU模型的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2023, 12(1): 236-246.
|
|
LIU Q T, XING Y X. Remaining life prediction of lithium-ion battery based on VMD-PSO-GRU model[J]. Energy Storage Science and Technology, 2023, 12(1): 236-246.
|
17 |
肖浩逸, 何晓霞, 梁佳佳, 等. 一种基于模态分解和机器学习的锂电池寿命预测方法[J]. 储能科学与技术, 2022, 11(12): 3999-4009.
|
|
XIAO H Y, HE X X, LIANG J J, et al. A lithium battery life-prediction method based on mode decomposition and machine learning[J]. Energy Storage Science and Technology, 2022, 11(12): 3999-4009.
|
18 |
郑雪莹, 邓晓刚, 曹玉苹. 基于能量加权高斯过程回归的锂离子电池健康状态预测[J]. 电子测量与仪器学报, 2020, 34(6): 63-69.
|
|
ZHENG X Y, DENG X G, CAO Y P. State of health prediction of lithium-ion batteries based on energy-weighted Gaussian process regression[J]. Journal of Electronic Measurement and Instrumentation, 2020, 34(6): 63-69.
|
19 |
陈彦余, 夏向阳, 周文钊, 等. 基于EMD-ARMA的锂离子电池剩余寿命预测[J]. 电力学报, 2021, 36(1): 43-50, 59.
|
|
CHEN Y Y, XIA X Y, ZHOU W Z, et al. Prediction of the lithium-ion battery remaining useful life based on EMD-ARMA[J]. Journal of Electric Power, 2021, 36(1): 43-50, 59.
|
20 |
欧阳名三, 屈琪. 基于SAE-EEMD-GRU的锂离子电池剩余使用寿命预测[J]. 佳木斯大学学报(自然科学版), 2022, 40(2): 43-49.
|
|
MINGSAN O Y, QI Q. Remaining useful life prediction of lithium-ion batteries based on SAE-EEMD-GRU[J]. Journal of Jiamusi University (Natural Science Edition), 2022, 40(2): 43-49.
|
21 |
HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995.
|
22 |
TORRES M E, COLOMINAS M A, SCHLOTTHAUER G, et al. A complete ensemble empirical mode decomposition with adaptive noise[C]//2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). May 22-27, 2011, Prague, Czech Republic. IEEE, 2011: 4144-4147.
|
23 |
CONG X W, ZHANG C P, JIANG J C, et al. A hybrid method for the prediction of the remaining useful life of lithium-ion batteries with accelerated capacity degradation[J]. IEEE Transactions on Vehicular Technology, 2020, 69(11): 12775-12785.
|
24 |
SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4(5): 383-391.
|
25 |
黄凯, 丁恒, 郭永芳, 等. 基于数据预处理和长短期记忆神经网络的锂离子电池寿命预测[J]. 电工技术学报, 2022, 37(15): 3753-3766.
|
|
HUANG K, DING H, GUO Y F, et al. Prediction of remaining useful life of lithium-ion battery based on adaptive data preprocessing and long short-term memory network[J]. Transactions of China Electrotechnical Society, 2022, 37(15): 3753-3766.
|