储能科学与技术 ›› 2024, Vol. 13 ›› Issue (11): 3811-3825.doi: 10.19799/j.cnki.2095-4239.2024.0467

• 储能材料与器件 • 上一篇    下一篇

锂离子电池硅负极用聚合物黏结剂研究进展

方靖1(), 杨续来1,2(), 戴涛3, 孙菲4()   

  1. 1.合肥大学安徽省锂离子动力与储能电池产业共性技术研究中心,安徽 合肥 230601
    2.国科能源技术创新中心(合肥)有限公司,安徽 合肥 230031
    3.安徽科达新材料有限公司,安徽 马鞍山 243100
    4.安徽省高新技术发展中心(省基础研究管理中心),安徽 合肥 230088
  • 收稿日期:2024-05-28 修回日期:2024-07-26 出版日期:2024-11-28 发布日期:2024-11-27
  • 通讯作者: 杨续来,孙菲 E-mail:3032847400@qq.com;yangxl@hfuu.edu.cn;502976779@qq.com
  • 作者简介:方靖(1999—),男,硕士研究生,研究方向为锂离子电池硅基负极材料,E-mail:3032847400@qq.com
  • 基金资助:
    安徽省科技重大专项(202203a05020017);中国工程院战略研究与咨询项目(2023-04)

Advances in polymer binders for silicon anodes in lithium-ion batteries

Jing FANG1(), Xulai YANG1,2(), Tao DAI3, Fei SUN4()   

  1. 1.LIB Technology Center of Anhui Province, Hefei University, Hefei 230601, Anhui, China
    2.NETC Innovation Center Co. Ltd, Hefei 230031, Anhui, China
    3.Anhui KEDA New Material Co. Ltd, Maanshan 243100, Anhui, China
    4.Anhui High-tech Development Center (Anhui Basic Research Management Center), Hefei 230088, Anhui, China
  • Received:2024-05-28 Revised:2024-07-26 Online:2024-11-28 Published:2024-11-27
  • Contact: Xulai YANG, Fei SUN E-mail:3032847400@qq.com;yangxl@hfuu.edu.cn;502976779@qq.com

摘要:

硅材料因其高比容量和较低的嵌锂电位等独特优势,被视为下一代锂离子电池负极材料的有力竞争者。然而,在锂离子脱嵌过程中产生的较大体积变化导致硅活性材料的粉碎和破裂,进而降低电池的循环性能。目前主要对硅负极材料进行改性来解决该问题,包括纳米化、碳包裹、合金化和使用聚合物黏结剂复合等方法,并取得了一定成效。其中,纳米化与合金化是从硅材料颗粒本体降低体积膨胀,而碳包裹和聚合物黏结剂复合技术则旨在从硅材料颗粒外部来抑制其体积膨胀的同时改善硅负极材料的导电性。本文首先阐述了硅负极材料的脱嵌锂机制及过程中存在的主要问题;其次,着重从黏结剂对提升硅负极稳定性的作用机理方面,总结了聚合物黏结剂复合对硅负极电化学性能提升的相关研究进展,包括使用三维结构黏结剂抑制硅负极的体积膨胀、引入自愈黏结剂实现硅负极的弹性体积膨胀以及采用导电黏结剂提高硅负极整体导电性等;最后,对硅负极聚合物黏结剂的发展前景进行了展望。本综述对提升硅基负极的应用具有重要作用,也对未来黏结剂的研发具有一定的启示作用。

关键词: 锂离子电池, 硅负极, 机理, 聚合物黏结剂

Abstract:

Silicon-based materials, including elemental silicon and its oxides, are promising candidates for next-generation anode materials in lithium-ion batteries due to their high specific capacity and low operating voltage. However, significant volume changes during the lithiation and delithiation processes lead to the pulverization and fracturing of silicon, compromising battery cycling performance. Current modification strategies for silicon anodes include nanosizing, carbon coating, alloying, and polymer/Si(SiO x ) composite approaches. Nanosizing and alloying aim to mitigate internal volume expansion within silicon particles, while carbon coating and polymer/Si(SiO x ) composites externally suppress volume changes and enhance conductivity. This paper discusses the mechanisms and primary challenges associated with silicon anode lithiation and delithiation. It emphasizes the role of polymer binders in stabilizing silicon anodes, reviewing recent progress in polymer binder composites, including three-dimensional structural binders that limit silicon expansion, self-healing binders that accommodate elastic volume changes, and conductive binders that enhance overall conductivity. The paper concludes with future research directions and trends in the development of polymer binders for silicon anodes.

Key words: lithium-ion battery, Si anodes, mechanism, polymer binders

中图分类号: