储能科学与技术 ›› 2024, Vol. 13 ›› Issue (11): 3796-3810.doi: 10.19799/j.cnki.2095-4239.2024.0569
        
               		申长洁1(
), 李晶晶1, 姜海迪1, 张玉强1, 达昊然2, 闫婕2, 张海涛1,2(
)
                  
        
        
        
        
    
收稿日期:2024-06-21
									
				
											修回日期:2024-06-22
									
				
									
				
											出版日期:2024-11-28
									
				
											发布日期:2024-11-27
									
			通讯作者:
					张海涛
											E-mail:cjshen@ipezz.ac.cn;htzhang@ipe.ac.cn
												作者简介:申长洁(1992—),女,硕士,工程师,研究方向为电池回收,E-mail:cjshen@ipezz.ac.cn;
				
							基金资助:
        
               		Changjie SHEN1(
), Jingjing LI1, Haidi JIANG1, Yuqiang ZHANG1, Haoran DA2, Jie YAN2, Haitao ZHANG1,2(
)
			  
			
			
			
                
        
    
Received:2024-06-21
									
				
											Revised:2024-06-22
									
				
									
				
											Online:2024-11-28
									
				
											Published:2024-11-27
									
			Contact:
					Haitao ZHANG   
											E-mail:cjshen@ipezz.ac.cn;htzhang@ipe.ac.cn
												摘要:
动力电池的服役年限通常为5~8年,达到使用寿命后需进行循环再生。退役电池中富含大量的能源金属和战略元素;其中,负极石墨属于战略矿产元素,在锂离子电池中质量占比达12%~21%,如若不进行妥善处理将造成资源浪费并对环境治理造成压力。本文通过对近期相关文献进行分析,从退役石墨失效机制、除杂方法及修复再生等环节归纳了退役石墨负极粉再利用研究进展。首先从SEI增厚失效、表面枝晶、活性颗粒破裂、集流体腐蚀四个方面系统分析了退役石墨失效机制;其次重点介绍了退役石墨杂质元素高效脱出方法,包括酸碱处理法、低共溶剂浸出法、电解法等;最后从碳材料包覆修复、金属氧化物包覆修复及表面人工界面膜构筑等方面着重阐述了退役石墨修复再利用策略;并对退役石墨发展方向和应用前景进行展望,提出未来退役石墨再生将朝着高值化、低能耗、可持续的方向发展。本文有望为退役动力电池石墨负极资源化利用构筑坚实的理论基础并提供极具价值的选择依据。
中图分类号:
申长洁, 李晶晶, 姜海迪, 张玉强, 达昊然, 闫婕, 张海涛. 退役石墨负极粉除杂及修复再生研究进展[J]. 储能科学与技术, 2024, 13(11): 3796-3810.
Changjie SHEN, Jingjing LI, Haidi JIANG, Yuqiang ZHANG, Haoran DA, Jie YAN, Haitao ZHANG. Research progress on impurity removal and repair regeneration of spent graphite negative electrode powder[J]. Energy Storage Science and Technology, 2024, 13(11): 3796-3810.
| 1 | EVTANK, 伊维经济研究院. 中国负极材料行业发展白皮书(2024年) [R]. 2024. | 
| EVTANK, China Yi Wei Institute of Economics. White paper on the development of China's Negative electrode materials industry (2024)[R]. 2024. | |
| 2 | SHANG Z, YU W H, ZHOU J H, et al. Recycling of spent lithium-ion batteries in view of graphite recovery: A review[J]. eTransportation, 2024, 20: 100320. DOI: 10.1016/j.etran. 2024. 100320. | 
| 3 | TIAN H H, GRACZYK-ZAJAC M, DE CAROLIS D M, et al. A facile strategy for reclaiming discarded graphite and harnessing the rate capabilities of graphite anodes[J]. Journal of Hazardous Materials, 2023, 445: 130607. DOI: 10.1016/j.jhazmat. 2022. 130607. | 
| 4 | ZHAO Y L, WANG H, LI X D, et al. Recovery of CuO/C catalyst from spent anode material in battery to activate peroxymonosulfate for refractory organic contaminants degradation[J]. Journal of Hazardous Materials, 2021, 420: 126552. DOI: 10.1016/j.jhazmat. 2021.126552. | 
| 5 | RUAN D S, ZOU K, DU K, et al. Recycling of graphite anode from spent lithium-ion batteries for preparing Fe-N-doped carbon ORR catalyst[J]. ChemCatChem, 2021, 13(8): 2025-2033. DOI: 10.1002/cctc.202001867. | 
| 6 | HE K, ZHANG Z Y, ZHANG F S. Synthesis of graphene and recovery of lithium from lithiated graphite of spent Li-ion battery[J]. Waste Management, 2021, 124: 283-292. DOI: 10.1016/j.wasman.2021.01.017. | 
| 7 | WANG W Q, HAN Y, ZHANG T, et al. Alkali metal salt catalyzed carbothermic reduction for sustainable recovery of LiCoO2: Accurately controlled reduction and efficient water leaching[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(19): 16729-16737. DOI: 10.1021/acssuschemeng.9b04175. | 
| 8 | ZHANG Y, GUO X M, WU F, et al. Mesocarbon microbead carbon-supported magnesium hydroxide nanoparticles: Turning spent Li-ion battery anode into a highly efficient phosphate adsorbent for wastewater treatment[J]. ACS Applied Materials & Interfaces, 2016, 8(33): 21315-21325. DOI: 10.1021/acsami.6b05458. | 
| 9 | XU Q, WANG Q W, CHEN D Q, et al. Silicon/graphite composite anode with constrained swelling and a stable solid electrolyte interphase enabled by spent graphite[J]. Green Chemistry, 2021, 23(12): 4531-4539. DOI: 10.1039/D1GC00630D. | 
| 10 | RUAN D S, WU L, WANG F M, et al. A low-cost silicon-graphite anode made from recycled graphite of spent lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2021, 884: 115073. DOI: 10.1016/j.jelechem.2021.115073. | 
| 11 | LIU K, YANG S L, LUO L Q, et al. From spent graphite to recycle graphite anode for high-performance lithium ion batteries and sodium ion batteries[J]. Electrochimica Acta, 2020, 356: 136856. DOI: 10.1016/j.electacta.2020.136856. | 
| 12 | LIANG H J, HOU B H, LI W H, et al. Staging Na/K-ion de-/ intercalation of graphite retrieved from spent Li-ion batteries: In operando X-ray diffraction studies and an advanced anode material for Na/K-ion batteries[J]. Energy & Environmental Science, 2019, 12(12): 3575-3584. DOI: 10.1039/C9EE02759A. | 
| 13 | LI X H, LIU S W, YANG J C, et al. Electrochemical methods contribute to the recycling and regeneration path of lithium-ion batteries[J]. Energy Storage Materials, 2023, 55: 606-630. DOI: 10.1016/j.ensm.2022.12.022. | 
| 14 | LUO P, ZHENG C, HE J W, et al. Structural engineering in graphite-based metal-ion batteries[J]. Advanced Functional Materials, 2022, 32(9): 2107277. DOI: 10.1002/adfm.202107277. | 
| 15 | YAO F, GÜNEŞ F, TA H Q, et al. Diffusion mechanism of lithium ion through basal plane of layered graphene[J]. Journal of the American Chemical Society, 2012, 134(20): 8646-8654. DOI: 10. 1021/ja301586m. | 
| 16 | HE Y Q, ZHANG T, WANG F F, et al. Recovery of LiCoO2 and graphite from spent lithium-ion batteries by Fenton reagent-assisted flotation[J]. Journal of Cleaner Production, 2017, 143: 319-325. DOI: 10.1016/j.jclepro.2016.12.106. | 
| 17 | YU J D, HE Y Q, QU L L, et al. Exploring the critical role of grinding modification on the flotation recovery of electrode materials from spent lithium ion batteries[J]. Journal of Cleaner Production, 2020, 274: 123066. DOI: 10.1016/j.jclepro. 2020. 123066. | 
| 18 | ZHAN R T, YANG Z Z, BLOOM I, et al. Significance of a solid electrolyte interphase on separation of anode and cathode materials from spent Li-ion batteries by froth flotation[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(1): 531-540. DOI: 10.1021/acssuschemeng.0c07965. | 
| 19 | NATARAJAN S, BORICHA A B, BAJAJ H C. Recovery of value-added products from cathode and anode material of spent lithium-ion batteries[J]. Waste Management, 2018, 77: 455-465. DOI: 10.1016/j.wasman.2018.04.032. | 
| 20 | CAO N, ZHANG Y L, CHEN L L, et al. An innovative approach to recover anode from spent lithium-ion battery[J]. Journal of Power Sources, 2021, 483: 229163. DOI: 10.1016/j.jpowsour. 2020. 229163. | 
| 21 | MA X T, CHEN M Y, CHEN B, et al. High-performance graphite recovered from spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(24): 19732-19738. DOI: 10. 1021/acssuschemeng.9b05003. | 
| 22 | LUO J W, ZHANG J C, GUO Z X, et al. Recycle spent graphite to defect-engineered, high-power graphite anode[J]. Nano Research, 2023, 16(4): 4240-4245. DOI: 10.1007/s12274-022-5244-z. | 
| 23 | WANG Q S, MAO B B, STOLIAROV S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131. DOI: 10.1016/j.pecs.2019.03.002. | 
| 24 | LIN C, TANG A H, MU H, et al. Aging mechanisms of electrode materials in lithium-ion batteries for electric vehicles[J]. Journal of Chemistry, 2015, 2015: 104673. DOI: 10.1155/2015/104673. | 
| 25 | QIAO Y, ZHAO H P, SHEN Y L, et al. Recycling of graphite anode from spent lithium-ion batteries: Advances and perspectives[J]. EcoMat, 2023, 5(4): e12321. DOI: 10.1002/eom2.12321. | 
| 26 | LI J, MURPHY E, WINNICK J, et al. Studies on the cycle life of commercial lithium ion batteries during rapid charge-discharge cycling[J]. Journal of Power Sources, 2001, 102(1/2): 294-301. DOI: 10.1016/S0378-7753(01)00821-7. | 
| 27 | BIRKL C R, ROBERTS M R, MCTURK E, et al. Degradation diagnostics for lithium ion cells[J]. Journal of Power Sources, 2017, 341: 373-386. DOI: 10.1016/j.jpowsour.2016.12.011. | 
| 28 | AGUBRA V, FERGUS J. Lithium ion battery anode aging mechanisms[J]. Materials, 2013, 6(4): 1310-1325. DOI: 10.3390/ma6041310. | 
| 29 | LIU T C, LIN L P, BI X X, et al. In situ quantification of interphasial chemistry in Li-ion battery[J]. Nature Nanotechnology, 2019, 14(1): 50-56. DOI: 10.1038/s41565-018-0284-y. | 
| 30 | BAI L Z, ZHAO D L, ZHANG T M, et al. A comparative study of electrochemical performance of graphene sheets, expanded graphite and natural graphite as anode materials for lithium-ion batteries[J]. Electrochimica Acta, 2013, 107: 555-561. DOI: 10. 1016/j.electacta.2013.06.032. | 
| 31 | WU S H, LEE P H. Storage fading of a commercial 18650 cell comprised with NMC/LMO cathode and graphite anode[J]. Journal of Power Sources, 2017, 349: 27-36. DOI: 10.1016/j.jpowsour.2017.03.002. | 
| 32 | LIU X R, DENG X, LIU R R, et al. Single nanowire electrode electrochemistry of silicon anode by in situ atomic force microscopy: Solid electrolyte interphase growth and mechanical properties[J]. ACS Applied Materials & Interfaces, 2014, 6(22): 20317-20323. DOI: 10.1021/am505847s. | 
| 33 | KONG L X, XING Y J, PECHT M G. In-situ observations of lithium dendrite growth[J]. IEEE Access, 2018, 6: 8387-8393. DOI: 10.1109/ACCESS.2018.2805281. | 
| 34 | TIKEKAR M D, CHOUDHURY S, TU Z Y, et al. Design principles for electrolytes and interfaces for stable lithium-metal batteries[J]. Nature Energy, 2016, 1(9): 16114. DOI: 10.1038/nenergy. 2016.114. | 
| 35 | 丰闪闪, 刘晓斌, 郭石麟, 等. 锂枝晶的成核、生长与抑制[J]. 化工学报, 2022, 73(1): 97-109. DOI: 10.11949/0438-1157.20211241. | 
| FENG S S, LIU X B, GUO S L, et al. Nucleation, growth and inhibition of lithium dendrites[J]. CIESC Journal, 2022, 73(1): 97-109. DOI: 10.11949/0438-1157.20211241. | |
| 36 | SACCI R L, DUDNEY N J, MORE K L, et al. Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy[J]. Chemical Communications, 2014, 50(17): 2104-2107. DOI: 10.1039/c3cc49029g. | 
| 37 | STARK J K, DING Y, KOHL P A. Nucleation of electrodeposited lithium metal: Dendritic growth and the effect of co-deposited sodium[J]. Journal of the Electrochemical Society, 2013, 160(9): D337-D342. DOI: 10.1149/2.028309jes. | 
| 38 | XIE J, LU Y C. A retrospective on lithium-ion batteries[J]. Nature Communications, 2020, 11(1): 2499. DOI: 10.1038/s41467-020-16259-9. | 
| 39 | ZHANG R, SHEN X, CHENG X B, et al. The dendrite growth in 3D structured lithium metal anodes: Electron or ion transfer limitation?[J]. Energy Storage Materials, 2019, 23: 556-565. DOI: 10.1016/j.ensm.2019.03.029. | 
| 40 | 王伊轩, 李晓天, 宋怀河. 锂离子电池炭负极材料表面改性研究进展[J]. 炭素技术, 2022, 41(4): 13-19. DOI: 10. 14078/j.cnki.1001-3741.2022.04.003. | 
| WANG Y X, LI X T, SONG H H. Research progress on surface modification of carbon anode materials for lithium-ion batteries[J]. Carbon Techniques, 2022, 41(4): 13-19. DOI: 10.14078/j.cnki.1001-3741.2022.04.003. | |
| 41 | AURBACH D, ZINIGRAD E, COHEN Y, et al. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions[J]. Solid State Ionics, 2002, 148(3/4): 405-416. DOI: 10.1016/S0167-2738(02)00080-2. | 
| 42 | HARRIS S J, DESHPANDE R D, QI Y, et al. Mesopores inside electrode particles can change the Li-ion transport mechanism and diffusion-induced stress[J]. Journal of Materials Research, 2010, 25(8): 1433-1440. DOI: 10.1557/JMR.2010.0183. | 
| 43 | NAKAJIMA T. Surface structures and electrochemical characteristics of surface-modified carbon anodes for lithium ion battery[J]. Solid State Sciences, 2007, 9(9): 777-784. DOI: 10.1016/j.solidstatesciences.2007.03.027. | 
| 44 | ZHU P C, GASTOL D, MARSHALL J, et al. A review of current collectors for lithium-ion batteries[J]. Journal of Power Sources, 2021, 485: 229321. DOI: 10.1016/j.jpowsour.2020.229321. | 
| 45 | LEE H, CHO J J, KIM J, et al. Comparison of voltammetric responses over the cathodic region in LiPF6 and LiBETI with and without HF[J]. Journal of the Electrochemical Society, 2005, 152(6): A1193. DOI: 10.1149/1.1914748. | 
| 46 | SHU J, SHUI M, HUANG F T, et al. Comparative study on surface behaviors of copper current collector in electrolyte for lithium-ion batteries[J]. Electrochimica Acta, 2011, 56(8): 3006-3014. DOI: 10.1016/j.electacta.2011.01.004. | 
| 47 | GUO R, LU L G, OUYANG M G, et al. Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion batteries[J]. Scientific Reports, 2016, 6: 30248. DOI: 10.1038/srep30248. | 
| 48 | MALEKI H, HOWARD J N. Effects of overdischarge on performance and thermal stability of a Li-ion cell[J]. Journal of Power Sources, 2006, 160(2): 1395-1402. DOI: 10.1016/j.jpowsour.2006.03.043. | 
| 49 | WILLIARD N, HENDRICKS C, SOOD B, et al. Evaluation of batteries for safe air transport[J]. Energies, 2016, 9(5): 340. DOI: 10.3390/en9050340. | 
| 50 | YANG Y, HUANG G Y, XU S M, et al. Thermal treatment process for the recovery of valuable metals from spent lithium-ion batteries[J]. Hydrometallurgy, 2016, 165: 390-396. DOI: 10.1016/j.hydromet.2015.09.025. | 
| 51 | LIU J J, SHI H, HU X Y, et al. Critical strategies for recycling process of graphite from spent lithium-ion batteries: A review[J]. Science of the Total Environment, 2022, 816: 151621. DOI: 10.1016/j.scitotenv.2021.151621. | 
| 52 | BARBOSA L, LUNA-LAMA F, GONZÁLEZ PEÑA Y, et al. Simple and eco-friendly fabrication of electrode materials and their performance in high-voltage lithium-ion batteries[J]. ChemSusChem, 2020, 13(4): 838-849. DOI: 10.1002/cssc. 201902586. | 
| 53 | 中国国家标准化管理委员会. 锂离子电池石墨类负极材料: GB/T 24533—2019[S]. 中国标准出版社, 2019.Standardization Administration of the People's Republic of China. Graphite negative electrode materials for lithium ion battery: GB/T 24533—2019 [S]. Standards Press of China, 2019. | 
| 54 | KUMAR PRAJAPATI A, BHATNAGAR A. A review on anode materials for lithium/sodium-ion batteries[J]. Journal of Energy Chemistry, 2023, 83: 509-540. DOI: 10.1016/j.jechem. 2023. 04.043. | 
| 55 | HENG S, SHAN X J, WANG W, et al. Controllable solid electrolyte interphase precursor for stabilizing natural graphite anode in lithium ion batteries[J]. Carbon, 2020, 159: 390-400. DOI: 10.1016/j.carbon.2019.12.054. | 
| 56 | SARKAR A, NLEBEDIM I C, SHROTRIYA P. Performance degradation due to anodic failure mechanisms in lithium-ion batteries[J]. Journal of Power Sources, 2021, 502: 229145. DOI: 10.1016/j.jpowsour.2020.229145. | 
| 57 | YANG J B, FAN E S, LIN J, et al. Recovery and reuse of anode graphite from spent lithium-ion batteries via citric acid leaching[J]. ACS Applied Energy Materials, 2021, 4(6): 6261-6268. DOI: 10.1021/acsaem.1c01029. | 
| 58 | YANG Y, SONG S L, LEI S Y, et al. A process for combination of recycling lithium and regenerating graphite from spent lithium-ion battery[J]. Waste Management, 2019, 85: 529-537. DOI: 10.1016/j.wasman.2019.01.008. | 
| 59 | DA H R, GAN M, JIANG D F, et al. Epitaxial regeneration of spent graphite anode material by an eco-friendly in-depth purification route[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(48): 16192-16202. DOI: 10.1021/acssuschemeng.1c05374. | 
| 60 | BOURLINOS A B, GEORGAKILAS V, ZBORIL R, et al. Reaction of graphite fluoride with NaOH-KOH eutectic[J]. Journal of Fluorine Chemistry, 2008, 129(8): 720-724. DOI: 10.1016/j.jfluchem.2008.05.020. | 
| 61 | WANG D, CHU J L, LIU Y H, et al. Novel process for titanium dioxide production from titanium slag: NaOH-KOH binary molten salt roasting and water leaching[J]. Industrial & Engineering Chemistry Research, 2013, 52(45): 15756-15762. DOI: 10.1021/ie400701g. | 
| 62 | ROTHERMEL S, EVERTZ M, KASNATSCHEEW J, et al. Graphite recycling from spent lithium-ion batteries[J]. ChemSusChem, 2016, 9(24): 3473-3484. DOI: 10.1002/cssc. 201601062. | 
| 63 | LAI Y M, ZHU X Q, LI J, et al. Recovery and regeneration of anode graphite from spent lithium-ion batteries through deep eutectic solvent treatment: Structural characteristics, electrochemical performance and regeneration mechanism[J]. Chemical Engineering Journal, 2023, 457: 141196. DOI: 10.1016/j.cej.2022.141196. | 
| 64 | ZHANG G W, HE Y Q, FENG Y, et al. Enhancement in liberation of electrode materials derived from spent lithium-ion battery by pyrolysis[J]. Journal of Cleaner Production, 2018, 199: 62-68. DOI: 10.1016/j.jclepro.2018.07.143. | 
| 65 | MORADI B, BOTTE G G. Recycling of graphite anodes for the next generation of lithium ion batteries[J]. Journal of Applied Electrochemistry, 2016, 46(2): 123-148. DOI: 10.1007/s10800-015-0914-0. | 
| 66 | ZHANG J, LI X L, SONG D W, et al. Effective regeneration of anode material recycled from scrapped Li-ion batteries[J]. Journal of Power Sources, 2018, 390: 38-44. DOI: 10.1016/j.jpowsour.2018.04.039. | 
| 67 | DA H R, LI J, SHI J T, et al. Enhancing the depressed initial Coulombic efficiency of regenerated graphite anodes via the surface modification of a TiNb2O7 nanolayer[J]. Carbon, 2022, 193: 157-170. DOI: 10.1016/j.carbon.2022.03.022. | 
| 68 | 梁力勃, 杨生龙, 蒋英, 等. 废旧石墨再生负载Fe3O4@Fe复合材料及其电化学性能[J]. 电源技术, 2021, 45(8): 972-975. DOI: 10.3969/j.issn.1002-087X.2021.08.003. | 
| LIANG L B, YANG S L, JIANG Y, et al. Regenerated spent graphite supported Fe3O4@Fe composite and electrochemical performances[J]. Chinese Journal of Power Sources, 2021, 45(8): 972-975. DOI: 10.3969/j.issn.1002-087X.2021.08.003. | |
| 69 | XU L, ZHANG X X, CHEN R J, et al. P-doped Ni/NiO heterostructured yolk-shell nanospheres encapsulated in graphite for enhanced lithium storage[J]. Small, 2022, 18(7): e2105897. DOI: 10.1002/smll.202105897. | 
| 70 | ZHAO Q, STALIN S, ARCHER L A. Stabilizing metal battery anodes through the design of solid electrolyte interphases[J]. Joule, 2021, 5(5): 1119-1142. DOI: 10.1016/j.joule.2021.03.024. | 
| 71 | SUN Y P, ZHAO Y, WANG J W, et al. A novel organic "polyurea" thin film for ultralong-life lithium-metal anodes via molecular-layer deposition[J]. Advanced Materials, 2019, 31(4): 1806541. DOI: 10.1002/adma.201806541. | 
| 72 | DA H R, PAN S S, LI J, et al. Greatly recovered electrochemical performances of regenerated graphite anode enabled by an artificial PMMA solid electrolyte interphase layer[J]. Energy Storage Materials, 2023, 56: 457-467. DOI: 10.1016/j.ensm. 2023.01.038. | 
| [1] | 肖鹏飞, 梅琳, 陈立宝. 多元包覆石墨复合负极材料的低温电化学储锂性能研究[J]. 储能科学与技术, 2024, 13(7): 2116-2123. | 
| [2] | 李臣, 张会林, 张建平. 基于核函数和超参数优化的退役锂电池健康状态估计[J]. 储能科学与技术, 2024, 13(6): 2010-2021. | 
| [3] | 杜进桥, 田杰, 李艳, 蔡普, 封文聪, 罗雯. 锂离子电池石墨负极失效及其先进表征方法[J]. 储能科学与技术, 2024, 13(10): 3467-3479. | 
| [4] | 廖雅贇, 周峰, 张颖曦, 吕途安, 何阳, 陈晓燕, 霍开富. 锂离子电池快充石墨负极材料研究进展[J]. 储能科学与技术, 2024, 13(1): 130-142. | 
| [5] | 周向阳, 胡颖杰, 梁家浩, 周其杰, 文康, 陈松, 杨娟, 唐晶晶. 天然鳞片石墨球化尾料的高性能负极材料制备及储锂特性研究[J]. 储能科学与技术, 2023, 12(9): 2767-2777. | 
| [6] | 张佳怡, 翁素婷, 王兆翔, 王雪锋. 石墨负极界面SEI膜与锂离子电池热失控[J]. 储能科学与技术, 2023, 12(7): 2105-2118. | 
| [7] | 燕乔一, 吴锋, 陈人杰, 李丽. 锂离子电池负极石墨回收处理及资源循环[J]. 储能科学与技术, 2022, 11(6): 1760-1771. | 
| [8] | 黄庆华,秦 杏,张 娜. 羧基纤维素钠在锂离子电池中的应用[J]. 储能科学与技术, 2017, 6(4): 806-809. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||