储能科学与技术 ›› 2024, Vol. 13 ›› Issue (10): 3467-3479.doi: 10.19799/j.cnki.2095-4239.2024.0284

• 储能材料与器件 • 上一篇    下一篇

锂离子电池石墨负极失效及其先进表征方法

杜进桥1(), 田杰1, 李艳1, 蔡普2, 封文聪2, 罗雯2()   

  1. 1.深圳供电局有限公司,广东 深圳 518001
    2.武汉理工大学材料复合新技术国家重点实验室,湖北 武汉 430070
  • 收稿日期:2024-03-31 修回日期:2024-05-14 出版日期:2024-10-28 发布日期:2024-10-30
  • 通讯作者: 罗雯 E-mail:jinqiaodu@qq.com;luowen_1991@whut.edu.cn
  • 作者简介:杜进桥(1988—),男,硕士,高级工程师,研究方向为储能安全,E-mail:jinqiaodu@qq.com
  • 基金资助:
    国家重点研发计划项目(2022YFB2404300)

Failure of graphite negative electrode in lithium-ion batteries and advanced characterization methods

Jinqiao DU1(), Jie TIAN1, Yan LI1, Pu CAI2, Wencong FENG2, Wen LUO2()   

  1. 1.Shenzhen Power Supply Bureau Co. Ltd. , Shenzhen 518001, Guangdong, China
    2.State Key Laboratory of New Materials Composite Technology, Wuhan University of Technology, Wuhan 430070, Hubei, China
  • Received:2024-03-31 Revised:2024-05-14 Online:2024-10-28 Published:2024-10-30
  • Contact: Wen LUO E-mail:jinqiaodu@qq.com;luowen_1991@whut.edu.cn

摘要:

在便携式设备和电动汽车发展日益受到关注的背景下,锂离子电池凭借其能量密度高、循环寿命长、自放电小等优点成为了大规模应用的商业电池。然而,锂离子电池在使用的过程中存在析锂、短路、热故障以及产气等多种失效形式,造成了锂离子电池容量衰减、电池膨胀、热失控等。因此,揭示电池失效原因对高安全长寿命锂离子电池进一步发展有着巨大的推进作用。本文针对锂离子电池中应用较为普遍的石墨负极,阐述了石墨负极在析锂、高低温、过充等条件下的失效机制,并重点介绍了对于不同失效机制下的先进表征方法,其通过石墨的结构、脱嵌锂时的相变、石墨表面的形貌、负极所释放的热量和反应所产生的气体等多种途径进行分析,总结出四种失效原因主要影响了石墨层间距、石墨脱嵌锂时的相变、活性锂的损耗,另外还会有界面膜生成以及一系列副反应等失效机制。最后,本文归纳了针对各种失效原因的表征方法并进行了分类,同时展望了对于电池失效分析的规范化和标准化,对未来的电池失效分析研究有一定的推动作用。

关键词: 锂离子电池, 石墨负极失效, 析锂, 高低温, 过充

Abstract:

With the growing focus on developing portable devices and electric vehicles, lithium-ion batteries (LIBs) have gained widespread commercial use owing to their high energy density, long cycle life, and small self-discharge. However, LIBs are prone to various failure modes during operation, such as lithium plating, short circuit, thermal failure, and gas generation. These issues can lead to capacity degradation, battery expansion, thermal runaway, and other safety concerns. Therefore, understanding and addressing these failure mechanisms are crucial for advancing the safety and longevity of LIBs. This study explores the failure mechanism of graphite negative electrodes, which are widely used in LIBs, under various conditions such as lithium plating, high and low temperature, overcharging, and other conditions. It also highlights advanced characterization techniques used to analyze these failure mechanisms. By examining the graphite structure, phase transition during lithium insertion, graphite surface morphology, heat released by the negative electrode, and gas generated by the reaction, the four primary causes of these failures are discussed, which mainly affect the failure mechanisms, such as graphite layer spacing, phase transition during lithium insertion of graphite, loss of active lithium, additional interface film generation, and other side reactions. Finally, the characterization methods for various failure causes are summarized. The standardization and normalization of battery failure analyses are further discussed, which play a key role in advancing future research and development efforts aimed at improving the safety and performance of LIBs.

Key words: lithium-ion batteries, graphite negative electrode failure, lithium precipitation, high and low temperature, overcharging

中图分类号: