储能科学与技术 ›› 2024, Vol. 13 ›› Issue (10): 3467-3479.doi: 10.19799/j.cnki.2095-4239.2024.0284
杜进桥1(), 田杰1, 李艳1, 蔡普2, 封文聪2, 罗雯2()
收稿日期:
2024-03-31
修回日期:
2024-05-14
出版日期:
2024-10-28
发布日期:
2024-10-30
通讯作者:
罗雯
E-mail:jinqiaodu@qq.com;luowen_1991@whut.edu.cn
作者简介:
杜进桥(1988—),男,硕士,高级工程师,研究方向为储能安全,E-mail:jinqiaodu@qq.com;
基金资助:
Jinqiao DU1(), Jie TIAN1, Yan LI1, Pu CAI2, Wencong FENG2, Wen LUO2()
Received:
2024-03-31
Revised:
2024-05-14
Online:
2024-10-28
Published:
2024-10-30
Contact:
Wen LUO
E-mail:jinqiaodu@qq.com;luowen_1991@whut.edu.cn
摘要:
在便携式设备和电动汽车发展日益受到关注的背景下,锂离子电池凭借其能量密度高、循环寿命长、自放电小等优点成为了大规模应用的商业电池。然而,锂离子电池在使用的过程中存在析锂、短路、热故障以及产气等多种失效形式,造成了锂离子电池容量衰减、电池膨胀、热失控等。因此,揭示电池失效原因对高安全长寿命锂离子电池进一步发展有着巨大的推进作用。本文针对锂离子电池中应用较为普遍的石墨负极,阐述了石墨负极在析锂、高低温、过充等条件下的失效机制,并重点介绍了对于不同失效机制下的先进表征方法,其通过石墨的结构、脱嵌锂时的相变、石墨表面的形貌、负极所释放的热量和反应所产生的气体等多种途径进行分析,总结出四种失效原因主要影响了石墨层间距、石墨脱嵌锂时的相变、活性锂的损耗,另外还会有界面膜生成以及一系列副反应等失效机制。最后,本文归纳了针对各种失效原因的表征方法并进行了分类,同时展望了对于电池失效分析的规范化和标准化,对未来的电池失效分析研究有一定的推动作用。
中图分类号:
杜进桥, 田杰, 李艳, 蔡普, 封文聪, 罗雯. 锂离子电池石墨负极失效及其先进表征方法[J]. 储能科学与技术, 2024, 13(10): 3467-3479.
Jinqiao DU, Jie TIAN, Yan LI, Pu CAI, Wencong FENG, Wen LUO. Failure of graphite negative electrode in lithium-ion batteries and advanced characterization methods[J]. Energy Storage Science and Technology, 2024, 13(10): 3467-3479.
1 | 彭官明, 吴朝阳. 新能源发展的技术瓶颈[J]. 农机使用与维修, 2022(10): 76-78. DOI: 10.14031/j.cnki.njwx.2022.10.024. |
PENG G M, WU Z Y. Study on the technological bottleneck of new energy development[J]. Agricultural Machinery Using & Maintenance, 2022(10): 76-78. DOI: 10.14031/j.cnki.njwx. 2022.10.024. | |
2 | 元博, 张运洲, 鲁刚, 等. 电力系统中储能发展前景及应用关键问题研究[J]. 中国电力, 2019, 52(3): 1-8. |
YUAN B, ZHANG Y Z, LU G, et al. Research on key issues of energy storage development and application in power systems[J]. Electric Power, 2019, 52(3): 1-8. | |
3 | KIM D S, LEE J U, KIM S H, et al. Electrochemically exfoliated graphite as a highly efficient conductive additive for an anode in lithium-ion batteries[J]. Battery Energy, 2023, 2(5): DOI: 10.1002/bte2.20230012. |
4 | LI Z J, WU X F, LUO W, et al. Dual sulfur-doped sites boost potassium storage in carbon nanosheets derived from low-cost sulfonate[J]. Chemical Engineering Journal, 2022, 431: 134207. DOI: 10.1016/j.cej.2021.134207. |
5 | XIE L J, TANG C, BI Z H, et al. Hard carbon anodes for next-generation Li-ion batteries: Review and perspective[J]. Advanced Energy Materials, 2021, 11(38): 2101650. DOI: 10.1002/aenm. 202101650. |
6 | 贾超, 赵霞, 张妍. 锂电池储能电站火灾风险分析与对策探讨[J]. 电力安全技术, 2022, 24(6): 23-26. DOI: 10.3969/j.issn.1008-6226.2022.06.008. |
JIA C, ZHAO X, ZHANG Y. On the fire risk analysis and strategies for lithium battery energy storage power stations[J]. Electric Safety Technology, 2022, 24(6): 23-26. DOI: 10.3969/j.issn.1008-6226.2022.06.008. | |
7 | 李晨尧, 李孝斌, 武军利, 等. 灭火剂抑制锂电池火灾研究现状分析[J]. 安全, 2023, 44(1): 54-59. DOI: 10.19737/j.cnki.issn1002-3631.2023.01.008. |
LI C Y, LI X B, WU J L, et al. Analysis on current research status of lithium-ion battery fire suppression by fire extinguishing agents[J]. Safety & Security, 2023, 44(1): 54-59. DOI: 10.19737/j.cnki.issn1002-3631.2023.01.008. | |
8 | TIAN Y, LIN C, CHEN X, et al. Reversible lithium plating on working anodes enhances fast charging capability in low-temperature lithium-ion batteries[J]. Energy Storage Materials, 2023, 56: 412-423. DOI: 10.1016/j.ensm.2023.01.035. |
9 | 颜雪冬, 马兴立, 李维义, 等. 浅析软包装锂离子电池胀气问题[J]. 电源技术, 2013, 37(9): 1536-1538. DOI: 10.3969/j.issn.1002-087X.2013.09.013. |
YAN X D, MA X L, LI W Y, et al. Analysis of swollen problem in soft packing lithium-ion batteries[J]. Chinese Journal of Power Sources, 2013, 37(9): 1536-1538. DOI: 10.3969/j.issn.1002-087X.2013.09.013. | |
10 | 王其钰, 王朔, 张杰男, 等. 锂离子电池失效分析概述[J]. 储能科学与技术, 2017, 6(5): 1008-1025. DOI: 10.12028/j.issn.2095-4239.2017.0043. |
WANG Q Y, WANG S, ZHANG J N, et al. Overview of the failure analysis of lithium ion batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 1008-1025. DOI: 10.12028/j.issn.2095-4239.2017.0043. | |
11 | FANG L Z, LIU X Z, LI T. Exploring battery material failure mechanisms through synchrotron X-ray characterization techniques[J]. Journal of Energy Chemistry, 2024, 94: 128-135. DOI: 10.1016/j.jechem.2024.02.019. |
12 | LI H G, ZHOU D, ZHANG M H, et al. Multi-field interpretation of internal short circuit and thermal runaway behavior for lithium-ion batteries under mechanical abuse[J]. Energy, 2023, 263: 126027. DOI: 10.1016/j.energy.2022.126027. |
13 | MALLICK S, GAYEN D. Thermal behaviour and thermal runaway propagation in lithium-ion battery systems–A critical review[J]. Journal of Energy Storage, 2023, 62: 106894. DOI: 10.1016/j.est.2023.106894. |
14 | GAO X L, LIU X H, XIE W L, et al. Multiscale observation of Li plating for lithium-ion batteries[J]. Rare Metals, 2021, 40(11): 3038-3048. DOI: 10.1007/s12598-021-01730-3. |
15 | WALDMANN T, HOGG B I, WOHLFAHRT-MEHRENS M. Li plating as unwanted side reaction in commercial Li-ion cells—A review[J]. Journal of Power Sources, 2018, 384: 107-124. DOI: 10.1016/j.jpowsour.2018.02.063. |
16 | 王怡, 陈学兵, 王愿习, 等. 储能锂离子电池多层级失效机理及分析技术综述[J]. 储能科学与技术, 2023, 12(7): 2079-2094. DOI: 10.19799/j.cnki.2095-4239.2023.0295. |
WANG Y, CHEN X B, WANG Y X, et al. Overview of multilevel failure mechanism and analysis technology of energy storage lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(7): 2079-2094. DOI: 10.19799/j.cnki.2095-4239.2023.0295. | |
17 | CHEN Z H, QIN Y, REN Y, et al. Multi-scale study of thermal stability of lithiated graphite[J]. Energy & Environmental Science, 2011, 4(10): 4023-4030. DOI: 10.1039/C1EE01786A. |
18 | WANG Q S, SUN J H, YAO X L, et al. Thermal behavior of lithiated graphite with electrolyte in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2006, 153(2): A329. DOI: 10.1149/1.2139955. |
19 | GALUSHKIN N Е, YAZVINSKAYA N N, GALUSHKIN D N. Mechanism of gases generation during lithium-ion batteries cycling[J]. Journal of the Electrochemical Society, 2019, 166(6): A897-A908. DOI: 10.1149/2.0041906jes. |
20 | GUO S S, XIONG R, SHEN W X, et al. Aging investigation of an echelon internal heating method on a three-electrode lithium ion cell at low temperatures[J]. Journal of Energy Storage, 2019, 25: 100878. DOI: 10.1016/j.est.2019.100878. |
21 | HU X S, ZHENG Y S, HOWEY D A, et al. Battery warm-up methodologies at subzero temperatures for automotive applications: Recent advances and perspectives[J]. Progress in Energy and Combustion Science, 2020, 77: 100806. DOI: 10.1016/j.pecs.2019.100806. |
22 | RAUHALA T, JALKANEN K, ROMANN T, et al. Low-temperature aging mechanisms of commercial graphite/LiFePO4 cells cycled with a simulated electric vehicle load profile—A post-mortem study[J]. Journal of Energy Storage, 2018, 20: 344-356. DOI: 10.1016/j.est.2018.10.007. |
23 | SPOTNITZ R, FRANKLIN J. Abuse behavior of high-power, lithium-ion cells[J]. Journal of Power Sources, 2003, 113(1): 81-100. DOI: 10.1016/S0378-7753(02)00488-3. |
24 | LI Y Z, LI Y B, PEI A, et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy[J]. Science, 2017, 358(6362): 506-510. DOI: 10.1126/science.aam6014. |
25 | 邓林旺, 冯天宇, 舒时伟, 等. 锂离子电池无损析锂检测研究进展[J]. 储能科学与技术, 2023, 12(1): 263-277. DOI: 10.19799/j.cnki.2095-4239.2022.0428. |
DENG L W, FENG T Y, SHU S W, et al. Nondestructive lithium plating online detection for lithium-ion batteries: A review[J]. Energy Storage Science and Technology, 2023, 12(1): 263-277. DOI: 10.19799/j.cnki.2095-4239.2022.0428. | |
26 | VETTER J, NOVÁK P, WAGNER M R, et al. Ageing mechanisms in lithium-ion batteries[J]. Journal of Power Sources, 2005, 147(1/2): 269-281. DOI: 10.1016/j.jpowsour.2005.01.006. |
27 | JIN Y, ZHENG Z K, WEI D H, et al. Detection of micro-scale Li dendrite via H2 gas capture for early safety warning[J]. Joule, 2020, 4(8): 1714-1729. DOI: 10.1016/j.joule.2020.05.016. |
28 | CROWTHER O, WEST A C. Effect of electrolyte composition on lithium dendrite growth[J]. Journal of the Electrochemical Society, 2008, 155(11): A806. DOI: 10.1149/1.2969424. |
29 | BIEKER G, WINTER M, BIEKER P. Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode[J]. Physical Chemistry Chemical Physics, 2015, 17(14): 8670-8679. DOI: 10.1039/c4cp05865h. |
30 | STEIGER J, RICHTER G, WENK M, et al. Comparison of the growth of lithium filaments and dendrites under different conditions[J]. Electrochemistry Communications, 2015, 50: 11-14. DOI: 10.1016/j.elecom.2014.11.002. |
31 | GHASSEMI H, AU M, CHEN N, et al. Real-time observation of lithium fibers growth inside a nanoscale lithium-ion battery[J]. 2011, 99(12): 123113. DOI: 10.1063/1.3643035. |
32 | LIU X H, ZHONG L, ZHANG L Q, et al. Lithium fiber growth on the anode in a nanowire lithium ion battery during charging[J]. 2011, 98(18): 183107. DOI: 10.1063/1.3585655. |
33 | DOWNIE L E, KRAUSE L J, BURNS J C, et al. In situ detection of lithium plating on graphite electrodes by electrochemical calorimetry[J]. Journal of the Electrochemical Society, 2013, 160(4): A588-A594. DOI: 10.1149/2.049304jes. |
34 | SCHINDLER S, BAUER M, PETZL M, et al. Voltage relaxation and impedance spectroscopy as in-operando methods for the detection of lithium plating on graphitic anodes in commercial lithium-ion cells[J]. Journal of Power Sources, 2016, 304: 170-180. DOI: 10.1016/j.jpowsour.2015.11.044. |
35 | ANSEÁN D, DUBARRY M, DEVIE A, et al. operando lithium plating quantification and early detection of a commercial LiFePO4 cell cycled under dynamic driving schedule[J]. Journal of Power Sources, 2017, 356: 36-46. DOI: 10.1016/j.jpowsour. 2017.04.072. |
36 | KOLETI U R, DINH T Q, MARCO J. A new on-line method for lithium plating detection in lithium-ion batteries[J]. Journal of Power Sources, 2020, 451: 227798. DOI: 10.1016/j.jpowsour. 2020.227798. |
37 | 董鹏, 张剑波, 王震坡. 基于电化学阻抗谱的锂离子电池析锂检测方法[J]. 汽车安全与节能学报, 2021, 12(4): 570-579. DOI: 10.3969/j.issn.1674-8484.2021.04.016. |
DONG P, ZHANG J B, WANG Z P. Lithium plating identification based on electrochemical impedance spectra of lithium ion batteries[J]. Journal of Automotive Safety and Energy, 2021, 12(4): 570-579. DOI: 10.3969/j.issn.1674-8484.2021.04.016. | |
38 | JAGFELD S M P,BIRKE K P,FILL A,et al. How cell design affects the aging behavior: comparing electrode-individual aging processes of high-energy and high-power lithium-ion batteries using high precision coulometry[J]. Batteries,2023,9(4): 232. |
39 | XIONG Y C, LIU Y, CHEN L, et al. New insight on graphite anode degradation induced by Li-plating[J]. Energy & Environmental Materials, 2022, 5(3): 872-876. DOI: 10.1002/eem2.12334. |
40 | PETZL M, DANZER M A. Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries[J]. Journal of Power Sources, 2014, 254: 80-87. DOI: 10.1016/j.jpowsour.2013.12.060. |
41 | 李奇松, 陈荣, 李慧芳. 阻抗分析法在锂离子电池析锂阈值检测中的应用[J]. 储能科学与技术, 2023, 12(4): 1278-1282. DOI: 10.19799/j.cnki.2095-4239.2022.0716. |
LI Q S, CHEN R, LI H F. Application of impedance analysis in the detection of lithium evolution threshold of lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(4): 1278-1282. DOI: 10.19799/j.cnki.2095-4239.2022.0716. | |
42 | BURNS J C, STEVENS D A, DAHN J R. In-situ detection of lithium plating using high precision coulometry[J]. Journal of the Electrochemical Society, 2015, 162(6): A959-A964. DOI: 10.1149/2.0621506jes. |
43 | VON LÜDERS C, ZINTH V, ERHARD S V, et al. Lithium plating in lithium-ion batteries investigated by voltage relaxation and in situ neutron diffraction[J]. Journal of Power Sources, 2017, 342: 17-23. DOI: 10.1016/j.jpowsour.2016.12.032. |
44 | WANDT J, JAKES P, GRANWEHR J, et al. Quantitative and time-resolved detection of lithium plating on graphite anodes in lithium ion batteries[J]. Materials Today, 2018, 21(3): 231-240. DOI: 10.1016/j.mattod.2017.11.001. |
45 | PETZL M, KASPER M, DANZER M A. Lithium plating in a commercial lithium-ion battery—A low-temperature aging study[J]. Journal of Power Sources, 2015, 275: 799-807. DOI: 10.1016/j.jpowsour.2014.11.065. |
46 | ZHU G L, WEN K C, LV W Q, et al. Materials insights into low-temperature performances of lithium-ion batteries[J]. Journal of Power Sources, 2015, 300: 29-40. DOI: 10.1016/j.jpowsour. 2015.09.056. |
47 | TOMASZEWSKA A, CHU Z Y, FENG X N, et al. Lithium-ion battery fast charging: A review[J]. eTransportation, 2019, 1: 100011. DOI: 10.1016/j.etran.2019.100011. |
48 | LUO H W, WANG Y D, FENG Y H, et al. Lithium-ion batteries under low-temperature environment: Challenges and prospects[J]. Materials, 2022, 15(22): 8166. DOI: 10.3390/ma15228166. |
49 | HU D Z, CHEN G, TIAN J, et al. Unrevealing the effects of low temperature on cycling life of 21700-type cylindrical Li-ion batteries[J]. Journal of Energy Chemistry, 2021, 60: 104-110. DOI: 10.1016/j.jechem.2020.12.024. |
50 | WANG S J, HU C, YU R, et al. Study on low-temperature cycle failure mechanism of a ternary lithium ion battery[J]. RSC Advances, 2022, 12(32): 20755-20761. DOI: 10.1039/D2RA02518C. |
51 | CHEN C C, WEI Y, ZHAO Z B, et al. Investigation of the swelling failure of lithium-ion battery packs at low temperatures using 2D/3D X-ray computed tomography[J]. Electrochimica Acta, 2019, 305: 65-71. DOI: 10.1016/j.electacta.2019.03.038. |
52 | WU W X, WU W, QIU X H, et al. Low-temperature reversible capacity loss and aging mechanism in lithium-ion batteries for different discharge profiles[J]. International Journal of Energy Research, 2019, 43(1): 243-253. DOI: 10.1002/er.4257. |
53 | GE H, HUANG J, ZHANG J B, et al. Temperature-adaptive alternating current preheating of lithium-ion batteries with lithium deposition prevention[J]. Journal of the Electrochemical Society, 2015, 163(2): A290-A299. DOI: 10.1149/2.0961602jes. |
54 | NAKHANIVEJ P, RANA H H, KIM H, et al. Transport and durability of energy storage materials operating at high temperatures[J]. ACS Nano, 2020, 14(7): 7696-7703. DOI: 10.1021/acsnano.0c04402. |
55 | ANDRE D,MEILER M,STEINER K,et al. Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation[J]. Journal of Power Sources,2011,196(12): 5334-5341. |
56 | YANG X G, LIU T, GAO Y, et al. Asymmetric temperature modulation for extreme fast charging of lithium-ion batteries[J]. Joule, 2019, 3(12): 3002-3019. DOI: 10.1016/j.joule.2019.09.021. |
57 | WAQAS M, ALI S, FENG C, et al. Recent development in separators for high-temperature lithium-ion batteries[J]. Small, 2019, 15(33): e1901689. DOI: 10.1002/smll.201901689. |
58 | ALI S, TAN C, WAQAS M, et al. Highly efficient PVDF-HFP/colloidal alumina composite separator for high-temperature lithium-ion batteries[J]. Advanced Materials Interfaces, 2018, 5(5): 1701147. DOI: 10.1002/admi.201701147. |
59 | QIAO Y, HE Y B, JIANG K Z, et al. High-voltage Li-ion full-cells with ultralong term cycle life at elevated temperature[J]. Advanced Energy Materials, 2018, 8(33): 1802322. DOI: 10.1002/aenm.201802322. |
60 | RODRIGUES M T F, BABU G, GULLAPALLI H, et al. A materials perspective on Li-ion batteries at extreme temperatures[J]. Nature Energy, 2017, 2(8): 17108. DOI: 10.1038/nenergy. 2017.108. |
61 | RODRIGUES M T F, KALAGA K, GULLAPALLI H, et al. Hexagonal boron nitride-based electrolyte composite for Li-ion battery operation from room temperature to 150 ℃[J]. Advanced Energy Materials, 2016, 6(12): 1600218. DOI: 10.1002/aenm.201600218. |
62 | SCHIPPER F, BOUZAGLO H, DIXIT M, et al. From surface ZrO2 coating to bulk Zr doping by high temperature annealing of nickel-rich lithiated oxides and their enhanced electrochemical performance in lithium ion batteries[J]. Advanced Energy Materials, 2018, 8(4): 1701682. DOI: 10.1002/aenm.201701682. |
63 | TAKEI K, KUMAI K, KOBAYASHI Y, et al. Cycle life estimation of lithium secondary battery by extrapolation method and accelerated aging test[J]. Journal of Power Sources, 2001, 97: 697-701. DOI: 10.1016/S0378-7753(01)00646-2. |
64 | HAN X B, OUYANG M G, LU L G, et al. A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification[J]. Journal of Power Sources, 2014, 251: 38-54. DOI: 10.1016/j.jpowsour.2013.11.029. |
65 | BIENSAN P, SIMON B, PÉRÈS J P, et al. On safety of lithium-ion cells[J]. Journal of Power Sources, 1999, 81: 906-912. DOI: 10.1016/S0378-7753(99)00135-4. |
66 | FLEISCHHAMMER M, WALDMANN T, BISLE G, et al. Interaction of cyclic ageing at high-rate and low temperatures and safety in lithium-ion batteries[J]. Journal of Power Sources, 2015, 274: 432-439. DOI: 10.1016/j.jpowsour.2014.08.135. |
67 | FENG X N, FANG M, HE X M, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry[J]. Journal of Power Sources, 2014, 255: 294-301. DOI: 10.1016/j.jpowsour.2014.01.005. |
68 | LIU X, YIN L, REN D S, et al. In situ observation of thermal-driven degradation and safety concerns of lithiated graphite anode[J]. Nature Communications, 2021, 12(1): 4235. DOI: 10.1038/s41467-021-24404-1. |
69 | HÖLDERLE T, MONCHAK M, BARAN V, et al. Thermal structural behavior of electrochemically lithiated graphite (LixC6) anodes in Li-ion batteries[J]. Batteries & Supercaps, 2024, 7(3): 2300499. DOI: 10.1002/batt.202300499. |
70 | DIDIER C, PANG W K, GUO Z P, et al. Phase evolution and intermittent disorder in electrochemically lithiated graphite determined using in operando neutron diffraction[J]. Chemistry of Materials, 2020, 32(6): 2518-2531. DOI: 10.1021/acs.chemmater. 9b05145. |
71 | HAIK O, GANIN S, GERSHINSKY G, et al. On the thermal behavior of lithium intercalated graphites[J]. Journal of the Electrochemical Society, 2011, 158(8): A913. DOI: 10.1149/1.3598173. |
72 | ZHAO C P, SUN J H, WANG Q S. Thermal runaway hazards investigation on 18650 lithium-ion battery using extended volume accelerating rate calorimeter[J]. Journal of Energy Storage, 2020, 28: 101232. DOI: 10.1016/j.est.2020.101232. |
73 | XU Z Y, SHI X L, ZHUANG X Q, et al. Chemical strain of graphite-based anode during lithiation and delithiation at various temperatures[J]. Research, 2021, 2021: 9842391. DOI: 10.34133/2021/9842391. |
74 | RODRIGUES M T F, KALAGA K, BABU G, et al. Coulombic inefficiency of graphite anode at high temperature[J]. Electrochimica Acta, 2018, 285: 1-8. DOI: 10.1016/j.electacta. 2018.07.152. |
75 | TAN L, ZHANG L, SUN Q N, et al. Capacity loss induced by lithium deposition at graphite anode for LiFePO4/graphite cell cycling at different temperatures[J]. Electrochimica Acta, 2013, 111: 802-808. DOI: 10.1016/j.electacta.2013.08.074. |
76 | FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267. DOI: 10.1016/j.ensm.2017.05.013. |
77 | 陈吉清, 刘蒙蒙, 周云郊, 等. 不同滥用条件下车用锂电池安全性实验研究[J]. 汽车工程, 2020, 42(1): 66-73. DOI: 10.19562/j.chinasae.qcgc.2020.01.010. |
CHEN J Q, LIU M M, ZHOU Y J, et al. Experimental study on safety of automotive NCM battery under different abuse conditions[J]. Automotive Engineering, 2020, 42(1): 66-73. DOI: 10.19562/j.chinasae.qcgc.2020.01.010. | |
78 | HUANG Z H, LIU J L, ZHAI H J, et al. Experimental investigation on the characteristics of thermal runaway and its propagation of large-format lithium ion batteries under overcharging and overheating conditions[J]. Energy, 2021, 233: 121103. DOI: 10.1016/j.energy.2021.121103. |
79 | MAO N, ZHANG T, WANG Z R, et al. Revealing the thermal stability and component heat contribution ratio of overcharged lithium-ion batteries during thermal runaway[J]. Energy, 2023, 263: 125786. DOI: 10.1016/j.energy.2022.125786. |
80 | MACNEIL D D, DAHN J R. The reaction of charged cathodes with nonaqueous solvents and electrolytes: I. Li0.5CoO2[J]. Journal of the Electrochemical Society, 2001, 148(11): A1205. DOI: 10.1149/1.1407245. |
81 | REN D S, FENG X N, LU L G, et al. Overcharge behaviors and failure mechanism of lithium-ion batteries under different test conditions[J]. Applied Energy, 2019, 250: 323-332. DOI: 10.1016/j.apenergy.2019.05.015. |
82 | ZHANG L L, MA Y L, CHENG X Q, et al. Capacity fading mechanism during long-term cycling of over-discharged LiCoO2/mesocarbon microbeads battery[J]. Journal of Power Sources, 2015, 293: 1006-1015. DOI: 10.1016/j.jpowsour.2015.06.040. |
83 | JUAREZ-ROBLES D, VYAS A A, FEAR C, et al. Overcharge and aging analytics of Li-ion cells[J]. Journal of the Electrochemical Society, 2020, 167(9): 090547. DOI: 10.1149/1945-7111/ab9569. |
84 | OHSAKI T, KISHI T, KUBOKI T, et al. Overcharge reaction of lithium-ion batteries[J]. Journal of Power Sources, 2005, 146(1/2): 97-100. DOI: 10.1016/j.jpowsour.2005.03.105. |
85 | LU W Q, LÓPEZ C M, LIU N, et al. Overcharge effect on morphology and structure of carbon electrodes for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2012, 159(5): A566-A570. DOI: 10.1149/2.jes035205. |
86 | LIU Y B, HUO R, QIN H L, et al. Overcharge investigation of degradations and behaviors of large format lithium ion battery with Li(Ni0.6Co0.2Mn0.2)O2 cathode[J]. Journal of Energy Storage, 2020, 31: 101643. DOI: 10.1016/j.est.2020.101643. |
87 | QI C, ZHU Y L, GAO F, et al. Morphology, structure and thermal stability analysis of cathode and anode material under overcharge[J]. Journal of the Electrochemical Society, 2018, 165(16): A3985-A3992. DOI: 10.1149/2.0911816jes. |
88 | LIN C K, REN Y, AMINE K, et al. In situ high-energy X-ray diffraction to study overcharge abuse of 18650-size lithium-ion battery[J]. Journal of Power Sources, 2013, 230: 32-37. DOI: 10.1016/j.jpowsour.2012.12.032. |
89 | WANG C J, ZHU Y L, GAO F, et al. Thermal runaway behavior and features of LiFePO4/graphite aged batteries under overcharge[J]. International Journal of Energy Research, 2020, 44(7): 5477-5487. DOI: 10.1002/er.5298. |
[1] | 孙中麟, 李嘉波, 田迪, 王志璇, 邢晓静. 基于COA-LSTM和VMD的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2024, 13(9): 3254-3265. |
[2] | 陆继忠, 彭思敏, 李晓宇. 基于多特征量分析和LSTM-XGBoost模型的锂离子电池SOH估计方法[J]. 储能科学与技术, 2024, 13(9): 2972-2982. |
[3] | 胡雪峰, 常先雷, 刘肖肖, 徐威, 张文彬. 适用于宽温度范围的锂离子电池SOC估计方法[J]. 储能科学与技术, 2024, 13(9): 2983-2994. |
[4] | 沈思远, 刘亚坤, 罗栋煌, 李雨珺, 郝伟. 储能锂离子电池模组暂态过电压防护设计与电路研发[J]. 储能科学与技术, 2024, 13(9): 3277-3286. |
[5] | 陈媛, 章思源, 蔡宇晶, 黄小贺, 刘炎忠. 融合多项式特征扩展与CNN-Transformer模型的锂电池SOH估计[J]. 储能科学与技术, 2024, 13(9): 2995-3005. |
[6] | 邢瑞鹤, 翁素婷, 李叶晶, 张佳怡, 张浩, 王雪锋. AI辅助电池材料表征与数据分析[J]. 储能科学与技术, 2024, 13(9): 2839-2863. |
[7] | 何宁, 杨芳芳. 考虑能量和温度特征的锂离子电池早期寿命预测[J]. 储能科学与技术, 2024, 13(9): 3016-3029. |
[8] | 管鸿盛, 钱诚, 孙博, 任羿. 贫数据条件下锂离子电池容量退化轨迹预测方法[J]. 储能科学与技术, 2024, 13(9): 3084-3093. |
[9] | 柯学, 洪华伟, 郑鹏, 李智诚, 范培潇, 杨军, 郭宇铮, 蒯春光. 基于多时间尺度建模自动特征提取和通道注意力机制的锂离子电池健康状态估计[J]. 储能科学与技术, 2024, 13(9): 3059-3071. |
[10] | 田成文, 孙丙香, 赵鑫泽, 付智城, 马仕昌, 赵博, 张旭博. 基于数据驱动的锂离子电池快速寿命预测[J]. 储能科学与技术, 2024, 13(9): 3103-3111. |
[11] | 李清波, 张懋慧, 罗英, 吕桃林, 解晶莹. 基于等效电路模型融合电化学原理的锂离子电池荷电状态估计[J]. 储能科学与技术, 2024, 13(9): 3072-3083. |
[12] | 何智峰, 陶远哲, 胡泳钢, 王其聪, 杨勇. 机器学习强化的电化学阻抗谱技术及其在锂离子电池研究中的应用[J]. 储能科学与技术, 2024, 13(9): 2933-2951. |
[13] | 孙丙香, 杨鑫, 周兴振, 马仕昌, 王志豪, 张维戈. 基于简化阻抗模型和比较元启发式算法的锂离子电池参数辨识方法[J]. 储能科学与技术, 2024, 13(9): 2952-2962. |
[14] | 黄煜峰, 梁焕超, 许磊. 基于卡尔曼滤波算法优化Transformer模型的锂离子电池健康状态预测方法[J]. 储能科学与技术, 2024, 13(8): 2791-2802. |
[15] | 王志勇, 蔡君瑶, 佘英奇, 钟树林, 潘康华. 氮杂环导电高分子改性锂离子电池石墨负极材料[J]. 储能科学与技术, 2024, 13(8): 2511-2518. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||