储能科学与技术 ›› 2024, Vol. 13 ›› Issue (11): 3811-3825.doi: 10.19799/j.cnki.2095-4239.2024.0467
收稿日期:2024-05-28
									
				
											修回日期:2024-07-26
									
				
									
				
											出版日期:2024-11-28
									
				
											发布日期:2024-11-27
									
			通讯作者:
					杨续来,孙菲
											E-mail:3032847400@qq.com;yangxl@hfuu.edu.cn;502976779@qq.com
												作者简介:方靖(1999—),男,硕士研究生,研究方向为锂离子电池硅基负极材料,E-mail:3032847400@qq.com;
				
							基金资助:
        
               		Jing FANG1(
), Xulai YANG1,2(
), Tao DAI3, Fei SUN4(
)
			  
			
			
			
                
        
    
Received:2024-05-28
									
				
											Revised:2024-07-26
									
				
									
				
											Online:2024-11-28
									
				
											Published:2024-11-27
									
			Contact:
					Xulai YANG, Fei SUN   
											E-mail:3032847400@qq.com;yangxl@hfuu.edu.cn;502976779@qq.com
												摘要:
硅材料因其高比容量和较低的嵌锂电位等独特优势,被视为下一代锂离子电池负极材料的有力竞争者。然而,在锂离子脱嵌过程中产生的较大体积变化导致硅活性材料的粉碎和破裂,进而降低电池的循环性能。目前主要对硅负极材料进行改性来解决该问题,包括纳米化、碳包裹、合金化和使用聚合物黏结剂复合等方法,并取得了一定成效。其中,纳米化与合金化是从硅材料颗粒本体降低体积膨胀,而碳包裹和聚合物黏结剂复合技术则旨在从硅材料颗粒外部来抑制其体积膨胀的同时改善硅负极材料的导电性。本文首先阐述了硅负极材料的脱嵌锂机制及过程中存在的主要问题;其次,着重从黏结剂对提升硅负极稳定性的作用机理方面,总结了聚合物黏结剂复合对硅负极电化学性能提升的相关研究进展,包括使用三维结构黏结剂抑制硅负极的体积膨胀、引入自愈黏结剂实现硅负极的弹性体积膨胀以及采用导电黏结剂提高硅负极整体导电性等;最后,对硅负极聚合物黏结剂的发展前景进行了展望。本综述对提升硅基负极的应用具有重要作用,也对未来黏结剂的研发具有一定的启示作用。
中图分类号:
方靖, 杨续来, 戴涛, 孙菲. 锂离子电池硅负极用聚合物黏结剂研究进展[J]. 储能科学与技术, 2024, 13(11): 3811-3825.
Jing FANG, Xulai YANG, Tao DAI, Fei SUN. Advances in polymer binders for silicon anodes in lithium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(11): 3811-3825.
表1
三种不同结构聚合物黏结剂的电化学性能总结"
| 黏结剂结构 | 黏结剂类型 | 黏结剂比例/% | 负极材料 | 循环性能 | 容量保持率/% | 参考文献 | 
|---|---|---|---|---|---|---|
| 线型 | PAA | — | SiNPs | 1518 mAh/g after 100 cycles at 0.2C  | 35.97 | [ | 
| PAA-PEC | — | SiNPs | 2386 mAh/g after 100 cycles at 0.2C  | 56.75 | [ | |
| PAA-PVA | 20 | SiNPs (<100nm)  | 2283 mAh/g after 100 cycles at 0.4 A/g  | 63.14 | [ | |
| LBG@XG | 10 | SiO x /C | 1000 cycles at 0.5 A/g | 74.1 | [ | |
| 支化 | PSA | 20 | SiNPs | 2513 mAh/g after 100 cycles at 0.36 A/g  | 83 | [ | 
| PAA-GA | 20 | SiNPs | 2591 mAh/g after 285 cycles at 0.2C  | 81 | [ | |
| 4A-PAA | 10 | SiO x /graphite | 558.1 mAh/g after 200 cycles at 0.16 A/g  | 89.1 | [ | |
| 交联 | PAA-GL | 10 | Si@SiO2 | 1192.7 mAh/g after 500 cycles at 2C  | 83.13 | [ | 
| CMC/EDTA-Ca2+ | 15 | Si/graphite | 602 mAh/g after 380 cycles at 1 A/g  | 80.7 | [ | |
| PAA-SS | 20 | SiNPs | 441 mAh/g after 500 cycles at 0.5 A/g  | 88.2 | [ | |
| CMC-CPAM | 20 | Si@C/graphite | 564 mAh/g after 350 cycles at 1.5 A/g  | 78 | [ | |
| LiCMC-TA | 1 | SiNPs | 1701 mAh/g after 150 cycles at 1 A/g  | 80.0 | [ | |
| 1 | 李琳. 经济视角下锂离子电池产业技术现状、挑战与未来[J]. 储能科学与技术, 2024, 13(1): 358-360. DOI: 10.19799/j.cnki.2095-4239.2024.0016. | 
| LI L. Technological landscape, challenges, and future outlook of the lithium-ion battery industry: An economic perspective[J]. Energy Storage Science and Technology, 2024, 13(1): 358-360. DOI: 10.19799/j.cnki.2095-4239.2024.0016. | |
| 2 | ZHAN X, LI M, LI S, et al. Challenges and opportunities towards silicon-based all-solid-state batteries[J]. Energy Storage Materials, 2023, 61: 102875. DOI: 10.1016/j.ensm.2023.102875. | 
| 3 | 杨续来, 袁帅帅, 杨文静, 等. 锂离子动力电池能量密度特性研究进展[J]. 机械工程学报, 2023, 59(6): 239-254. | 
| YANG X L, YUAN S S, YANG W J, et al. Research progress on energy density of Li-ion batteries for EVs[J]. Journal of Mechanical Engineering, 2023, 59(6): 239-254. | |
| 4 | XU Z L, LIU X M, LUO Y S, et al. Nanosilicon anodes for high performance rechargeable batteries[J]. Progress in Materials Science, 2017, 90: 1-44. DOI: 10.1016/j.pmatsci.2017.07.003. | 
| 5 | NITTA N, WU F X, LEE J T, et al. Li-ion battery materials: Present and future[J]. Materials Today, 2015, 18(5): 252-264. DOI: 10.1016/j.mattod.2014.10.040. | 
| 6 | LI P, ZHAO G Q, ZHENG X B, et al. Recent progress on silicon-based anode materials for practical lithium-ion battery applications[J]. Energy Storage Materials, 2018, 15: 422-446. DOI: 10.1016/j.ensm.2018.07.014. | 
| 7 | LI J, DAHN J R. An in situ X-ray diffraction study of the reaction of Li with crystalline Si[J]. Journal of the Electrochemical Society, 2007, 154(3): A156. DOI: 10.1149/1.2409862. | 
| 8 | ASHURI M, HE Q R, SHAW L L. Silicon as a potential anode material for Li-ion batteries: Where size, geometry and structure matter[J]. Nanoscale, 2016, 8(1): 74-103. DOI: 10.1039/C5NR05116A. | 
| 9 | WU H, CUI Y. Designing nanostructured Si anodes for high energy lithium ion batteries[J]. Nano Today, 2012, 7(5): 414-429. DOI: 10.1016/j.nantod.2012.08.004. | 
| 10 | HU Z F, ZHAO R, YANG J J, et al. Binders for Si based electrodes: Current status, modification strategies and perspective[J]. Energy Storage Materials, 2023, 59: 102776. DOI: 10.1016/j.ensm.2023.102776. | 
| 11 | GUO K, KUMAR R, XIAO X C, et al. Failure progression in the solid electrolyte interphase (SEI) on silicon electrodes[J]. Nano Energy, 2020, 68: 104257. DOI: 10.1016/j.nanoen.2019.104257. | 
| 12 | ADENUSI H, CHASS G A, PASSERINI S, et al. Lithium batteries and the solid electrolyte interphase (SEI)-Progress and outlook[J]. Advanced Energy Materials, 2023, 13(10): 2203307. DOI: 10.1002/aenm.202203307. | 
| 13 | HE Z Y, XIAO Z X, YUE H J, et al. Single-walled carbon nanotube film as an efficient conductive network for Si-based anodes[J]. Advanced Functional Materials, 2023, 33(26): 2300094. DOI: 10.1002/adfm.202300094. | 
| 14 | YUCA N, DOĞDU M F, CETINTASOGLU M E, et al. Investigation of the conductivity effect on silicon anode performance for lithium ion batteries[J]. ECS Meeting Abstracts, 2016 (3): 275. DOI: 10.1149/ma2016-02/3/275. | 
| 15 | SCHWAN J, NAVA G, MANGOLINI L. Critical barriers to the large scale commercialization of silicon-containing batteries[J]. Nanoscale Advances, 2020, 2(10): 4368-4389. DOI: 10.1039/D0NA00589D. | 
| 16 | SHEN T, YAO Z J, XIA X H, et al. Rationally designed silicon nanostructures as anode material for lithium-ion batteries[J]. Advanced Engineering Materials, 2018, 20(1). DOI: 10.1002/adem.201700591. | 
| 17 | XIA X, QIAN X Y, CHEN C, et al. Recent progress of Si-based anodes in the application of lithium-ion batteries[J]. Journal of Energy Storage, 2023, 72: 108715. DOI: 10.1016/j.est. 2023. 108715. | 
| 18 | ZHANG F, ZHU W Q, LI T T, et al. Advances of synthesis methods for porous silicon-based anode materials[J]. Frontiers in Chemistry, 2022, 10: 889563. DOI: 10.3389/fchem.2022.889563. | 
| 19 | LI Z J, DU M J, GUO X, et al. Research progress of SiOx-based anode materials for lithium-ion batteries[J]. Chemical Engineering Journal, 2023, 473: 145294. DOI: 10.1016/j.cej.2023.145294. | 
| 20 | 余晨露, 田晓华, 张哲娟, 等. 锂离子电池硅基负极比容量提升的研究进展[J]. 储能科学与技术, 2020, 9(6): 1614-1628. DOI: 10.19799/j.cnki.2095-4239.2020.0163. | 
| YU C L, TIAN X H, ZHANG Z J, et al. Research progress of specific capacity improvements of silicon-based anodes in lithium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(6): 1614-1628. DOI: 10.19799/j.cnki.2095-4239.2020.0163. | |
| 21 | XU Y X, ZHANG Q, LV N, et al. Carboxyl function group introduced to polyimide binders for silicon anode materials[J]. Energy & Fuels, 2023, 37(3): 2441-2448. DOI: 10.1021/acs.energyfuels.2c04024. | 
| 22 | LEE S Y, CHOI Y, KWON S H, et al. Cracking resistance and electrochemical performance of silicon anode on binders with different mechanical characteristics[J]. Journal of Industrial and Engineering Chemistry, 2019, 74: 216-222. DOI: 10.1016/j.jiec.2019.03.009. | 
| 23 | SUN F, ROSBOROUGH N, CLARKE N, et al. Binder effect on electrochemical performance of silicon anodes[J]. ECS Meeting Abstracts, 2022, (3): 244. DOI: 10.1149/ma2022-023244mtgabs. | 
| 24 | 刘大进, 吴强, 何仁杰, 等. 生物高分子在锂离子电池硅负极中的研究进展[J]. 储能科学与技术, 2021, 10(6): 2156-2168. DOI: 10.19799/j.cnki.2095-4239.2021.0115. | 
| LIU D J, WU Q, HE R J, et al. Research progress of biopolymers in Si anodes for lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(6): 2156-2168. DOI: 10.19799/j.cnki.2095-4239.2021.0115. | |
| 25 | YOON D H, MARINARO M, AXMANN P, et al. Study of the binder influence on expansion/contraction behavior of silicon alloy negative electrodes for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2020, 167(16): 160537. DOI: 10.1149/1945-7111/abcf4f. | 
| 26 | ZHANG X Y, SONG W L, CHEN H S, et al. Role of the binder in the mechanical integrity of micro-sized crystalline silicon anodes for Li-Ion batteries[J]. Journal of Power Sources, 2020, 465: 228290. DOI: 10.1016/j.jpowsour.2020.228290. | 
| 27 | LIU W J, SU S X, WANG Y, et al. Constructing a stable conductive network for high-performance silicon-based anode in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2024, 16(8): 10703-10713. DOI: 10.1021/acsami.3c17942. | 
| 28 | TAO W, WANG P, YOU Y, et al. Strategies for improving the storage performance of silicon-based anodes in lithium-ion batteries[J]. Nano Research, 2019, 12(8): 1739-1749. DOI: 10.1007/s12274-019-2361-4. | 
| 29 | LI J T, WU Z Y, LU Y Q, et al. Water soluble binder, an electrochemical performance booster for electrode materials with high energy density[J]. Advanced Energy Materials, 2017, 7(24): 1701185. DOI: 10.1002/aenm.201701185. | 
| 30 | CHEN H, LING M, HENCZ L, et al. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices[J]. Chemical Reviews, 2018, 118(18): 8936-8982. DOI: 10.1021/acs.chemrev.8b00241. | 
| 31 | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. DOI: 10.19799/j.cnki.2095-4239.2022.0125. | 
| DENG J X, ZHAO J L, HUANG C D. High energy density lithium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(7): 2092-2102. DOI: 10.19799/j.cnki.2095-4239.2022.0125. | |
| 32 | LEE G, CHOI Y, JI H, et al. Interwoven carbon nanotube-poly(acrylic acid) network scaffolds for stable Si microparticle battery anode[J]. Carbon, 2023, 202: 12-19. DOI: 10.1016/j.carbon. 2022.10.031. | 
| 33 | CHEN P, HUANG W L, LIU H T, et al. Enhanced cyclability of silicon anode via synergy effect of polyimide binder and conductive polyacrylonitrile[J]. Journal of Materials Science, 2019, 54(12): 8941-8954. DOI: 10.1007/s10853-019-03518-4. | 
| 34 | HE J R, ZHANG L Z. Polyvinyl alcohol grafted poly (acrylic acid) as water-soluble binder with enhanced adhesion capability and electrochemical performances for Si anode[J]. Journal of Alloys and Compounds, 2018, 763: 228-240. DOI: 10.1016/j.jallcom.2018.05.286. | 
| 35 | ZHANG L, DING Y, SONG J X. Crosslinked carboxymethyl cellulose-sodium borate hybrid binder for advanced silicon anodes in lithium-ion batteries[J]. Chinese Chemical Letters, 2018, 29(12): 1773-1776. DOI: 10.1016/j.cclet.2018.03.008. | 
| 36 | XU Y H, YIN G P, MA Y L, et al. Simple annealing process for performance improvement of silicon anode based on polyvinylidene fluoride binder[J]. Journal of Power Sources, 2010, 195(7): 2069-2073. DOI: 10.1016/j.jpowsour.2009.10.041. | 
| 37 | BRIDEL J S, AZAÏS T, MORCRETTE M, et al. Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries[J]. Chemistry of Materials, 2010, 22(3): 1229-1241. DOI: 10.1021/cm902688w. | 
| 38 | MAGASINSKI A, ZDYRKO B, KOVALENKO I, et al. Toward efficient binders for Li-ion battery Si-based anodes: Polyacrylic acid[J]. ACS Applied Materials & Interfaces, 2010, 2(11): 3004-3010. DOI: 10.1021/am100871y. | 
| 39 | RAMDHINY M N, JEON J W. Design of multifunctional polymeric binders in silicon anodes for lithium-ion batteries[J]. Carbon Energy, 2024, 6(4): e356. DOI: 10.1002/cey2.356. | 
| 40 | MAZOUZI D, LESTRIEZ B, ROUÉ L, et al. Silicon composite electrode with high capacity and long cycle life[J]. Electrochemical and Solid-State Letters, 2009, 12(11): A215. DOI: 10.1149/1.3212894. | 
| 41 | KOMABA S, SHIMOMURA K, YABUUCHI N, et al. Study on polymer binders for high-capacity SiO negative electrode of Li-ion batteries[J]. The Journal of Physical Chemistry C, 2011, 115(27): 13487-13495. DOI: 10.1021/jp201691g. | 
| 42 | WANG J T, WAN C C, HONG J L. Polymer Blends of Pectin/Poly(acrylic acid) as Efficient Binders for Silicon Anodes in Lithium-Ion Batteries[J]. ChemElectroChem, 2020, 7(14): 3106-3115. DOI: 10.1002/celc.202000666. | 
| 43 | SONG J X, ZHOU M J, YI R, et al. Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries[J]. Advanced Functional Materials, 2014, 24(37): 5904-5910. DOI: 10.1002/adfm.201401269. | 
| 44 | DUFFICY M K, CORDER R D, DENNIS K A, et al. Guar gel binders for silicon nanoparticle anodes: Relating binder rheology to electrode performance[J]. ACS Applied Materials & Interfaces, 2021, 13(43): 51403-51413. DOI: 10.1021/acsami.1c10776. | 
| 45 | ZHONG H X, HE J R, ZHANG L Z. Crosslinkable aqueous binders containing Arabic gum-grafted-poly (acrylic acid) and branched polyols for Si anode of lithium-ion batteries[J]. Polymer, 2021, 215: 123377. DOI: 10.1016/j.polymer.2020.123377. | 
| 46 | LIU H Y, LIAO J P, ZHU T M, et al. In situ hydrogel polymerization to form a flexible polysaccharide synergetic binder network for stabilizing SiOx/C anodes[J]. ACS Applied Materials & Interfaces, 2023, 15(42): 49071-49082. DOI: 10.1021/acsami.3c08610. | 
| 47 | PÉREZ-MATEOS M, MONTERO P. Effects of cations on the gelling characteristics of fish mince with added nonionic and ionic gums[J]. Food Hydrocolloids, 2002, 16(4): 363-373. DOI: 10.1016/S0268-005X(01)00109-6. | 
| 48 | PAN Y Y, GE S R, RASHID Z, et al. Adhesive polymers as efficient binders for high-capacity silicon electrodes[J]. ACS Applied Energy Materials, 2020, 3(4): 3387-3396. DOI: 10.1021/acsaem.9b02420. | 
| 49 | LI J J, ZHANG G Z, YANG Y, et al. Glycinamide modified polyacrylic acid as high-performance binder for silicon anodes in lithium-ion batteries[J]. Journal of Power Sources, 2018, 406: 102-109. DOI: 10.1016/j.jpowsour.2018.10.057. | 
| 50 | LUO C, WU X F, ZHANG T, et al. A four-armed polyacrylic acid homopolymer binder with enhanced performance for SiOx/graphite anode[J]. Macromolecular Materials and Engineering, 2021, 306(1): DOI: 10.1002/mame.202000525. | 
| 51 | CAO P F, YANG G, LI B R, et al. Rational design of a multifunctional binder for high-capacity silicon-based anodes[J]. ACS Energy Letters, 2019, 4(5): 1171-1180. DOI: 10.1021/acsenergylett.9b00815. | 
| 52 | YE H J, JIANG F Q, LI H Q, et al. Facile synthesis of conjugated polymeric Schiff base as negative electrodes for lithium ion batteries[J]. Electrochimica Acta, 2017, 253: 319-323. DOI: 10.1016/j.electacta.2017.09.062. | 
| 53 | SUN S, HE D L, LI P, et al. Improved adhesion of cross-linked binder and SiO2-coating enhances structural and cyclic stability of silicon electrodes for lithium-ion batteries[J]. Journal of Power Sources, 2020, 454: 227907. DOI: 10.1016/j.jpowsour. 2020.227907. | 
| 54 | ZHANG S, XU X, TU J, et al. Cross-linked binder enables reversible volume changes of Si-based anodes from sustainable photovoltaic waste silicon[J]. Materials Today Sustainability, 2022, 19: 100178. DOI: 10.1016/j.mtsust.2022.100178. | 
| 55 | LIU J, MA R G, ZHENG W, et al. Cross-linking network of soft–rigid dual chains to effectively suppress volume change of silicon anode[J]. The Journal of Physical Chemistry Letters, 2022, 13(33): 7712-7721. DOI: 10.1021/acs.jpclett.2c02019. | 
| 56 | YU L B, LIU J, HE S S, et al. A novel high-performance 3D polymer binder for silicon anode in lithium-ion batteries[J]. Journal of Physics and Chemistry of Solids, 2019, 135: 109113. DOI: 10.1016/j.jpcs.2019.109113. | 
| 57 | ZHANG J H, WANG N, ZHANG W, et al. A cycling robust network binder for high performance Si–based negative electrodes for lithium-ion batteries[J]. Journal of Colloid and Interface Science, 2020, 578: 452-460. DOI: 10.1016/j.jcis.2020.06.008. | 
| 58 | TANG B, HE S G, DENG Y Y, et al. Advanced binder with ultralow-content for high performance silicon anode[J]. Journal of Power Sources, 2023, 556: 232237. DOI: 10.1016/j.jpowsour.2022.232237. | 
| 59 | CHEN J H, LI Y X, WU X Y, et al. Dynamic hydrogen bond cross-linking binder with self-healing chemistry enables high-performance silicon anode in lithium-ion batteries[J]. Journal of Colloid and Interface Science, 2024, 657: 893-902. DOI: 10.1016/j.jcis.2023.12.057. | 
| 60 | JANG W, KIM S, KANG Y M, et al. A high-performance self-healing polymer binder for Si anodes based on dynamic carbon radicals in cross-linked poly(acrylic acid)[J]. Chemical Engineering Journal, 2023, 469: 143949. DOI: 10.1016/j.cej.2023.143949. | 
| 61 | WANG Y, XU H, CHEN X, et al. Novel constructive self-healing binder for silicon anodes with high mass loading in lithium-ion batteries[J]. Energy Storage Materials, 2021, 38: 121-129. DOI: 10.1016/j.ensm.2021.03.003. | 
| 62 | ZHAO J K, LI W H, XIE M Z, et al. Robust 3D network binder for stable and high-performance Si-based lithium-ion battery anodes[J]. Advanced Materials Technologies, 2023, 8(13): 2201830. DOI: 10.1002/admt.202201830. | 
| 63 | ZHAO E Y, GUO Z L, LIU J, et al. A low-cost and eco-friendly network binder coupling stiffness and softness for high-performance Li-ion batteries[J]. Electrochimica Acta, 2021, 387: 138491. DOI: 10.1016/j.electacta.2021.138491. | 
| 64 | CHEN S M, SONG Z B, WANG L, et al. Establishing a resilient conductive binding network for Si-based anodes via molecular engineering[J]. Accounts of Chemical Research, 2022, 55(15): 2088-2102. DOI: 10.1021/acs.accounts.2c00259. | 
| 65 | LIU Y X, SHAO R, JIANG R Y, et al. A review of existing and emerging binders for silicon anodic Li-ion batteries[J]. Nano Research, 2023, 16(5): 6736-6752. DOI: 10.1007/s12274-022-5281-7. | 
| 66 | YE Q Q, ZHENG P T, AO X H, et al. Novel multi-block conductive binder with polybutadiene for Si anodes in lithium-ion batteries[J]. Electrochimica Acta, 2019, 315: 58-66. DOI: 10.1016/j.electacta. 2019.05.093. | 
| 67 | MERY A, BERNARD P, VALERO A, et al. A polyisoindigo derivative as novel n-type conductive binder inside Si@C nanoparticle electrodes for Li-ion battery applications[J]. Journal of Power Sources, 2019, 420: 9-14. DOI: 10.1016/j.jpowsour. 2019.02.062. | 
| 68 | LIU G, XUN S D, VUKMIROVIC N, et al. Polymers with tailored electronic structure for high capacity lithium battery electrodes[J]. Advanced Materials, 2011, 23(40): 4679-4683. DOI: 10.1002/adma.201102421. | 
| 69 | YU Y Y, ZHU J D, ZENG K, et al. Mechanically robust and superior conductive n-type polymer binders for high-performance micro-silicon anodes in lithium-ion batteries[J]. Journal of Materials Chemistry A, 2021, 9(6): 3472-3481. DOI: 10.1039/D0TA10525B. | 
| 70 | BAHRY T, CUI Z P, DENISET-BESSEAU A, et al. An alternative radiolytic route for synthesizing conducting polymers in an organic solvent[J]. New Journal of Chemistry, 2018, 42(11): 8704-8716. DOI: 10.1039/C8NJ01041B. | 
| 71 | JONAS F, KRAFFT W, MUYS B. Poly(3, 4-ethylenedioxythiophene): Conductive coatings, technical applications and properties[J]. Macromolecular Symposia, 1995, 100(1): 169-173. DOI: 10.1002/masy.19951000128. | 
| 72 | HIGGINS T M, PARK S H, KING P J, et al. A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes[J]. ACS Nano, 2016, 10(3): 3702-3713. DOI: 10.1021/acsnano. 6b00218. | 
| 73 | KONG N J, KIM M S, PARK J H, et al. Promoting homogeneous lithiation of silicon anodes via the application of bifunctional PEDOT: PSS/PEG composite binders[J]. Energy Storage Materials, 2024, 64: 103074. DOI: 10.1016/j.ensm.2023.103074. | 
| 74 | KIM J, KIM M S, LEE Y, et al. Hierarchically structured conductive polymer binders with silver nanowires for high-performance silicon anodes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(15): 17340-17347. DOI: 10.1021/acsami. 2c00844. | 
| [1] | 孙中麟, 李嘉波, 田迪, 王志璇, 邢晓静. 基于COA-LSTM和VMD的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2024, 13(9): 3254-3265. | 
| [2] | 陆继忠, 彭思敏, 李晓宇. 基于多特征量分析和LSTM-XGBoost模型的锂离子电池SOH估计方法[J]. 储能科学与技术, 2024, 13(9): 2972-2982. | 
| [3] | 胡雪峰, 常先雷, 刘肖肖, 徐威, 张文彬. 适用于宽温度范围的锂离子电池SOC估计方法[J]. 储能科学与技术, 2024, 13(9): 2983-2994. | 
| [4] | 沈思远, 刘亚坤, 罗栋煌, 李雨珺, 郝伟. 储能锂离子电池模组暂态过电压防护设计与电路研发[J]. 储能科学与技术, 2024, 13(9): 3277-3286. | 
| [5] | 陈媛, 章思源, 蔡宇晶, 黄小贺, 刘炎忠. 融合多项式特征扩展与CNN-Transformer模型的锂电池SOH估计[J]. 储能科学与技术, 2024, 13(9): 2995-3005. | 
| [6] | 邢瑞鹤, 翁素婷, 李叶晶, 张佳怡, 张浩, 王雪锋. AI辅助电池材料表征与数据分析[J]. 储能科学与技术, 2024, 13(9): 2839-2863. | 
| [7] | 何宁, 杨芳芳. 考虑能量和温度特征的锂离子电池早期寿命预测[J]. 储能科学与技术, 2024, 13(9): 3016-3029. | 
| [8] | 管鸿盛, 钱诚, 孙博, 任羿. 贫数据条件下锂离子电池容量退化轨迹预测方法[J]. 储能科学与技术, 2024, 13(9): 3084-3093. | 
| [9] | 柯学, 洪华伟, 郑鹏, 李智诚, 范培潇, 杨军, 郭宇铮, 蒯春光. 基于多时间尺度建模自动特征提取和通道注意力机制的锂离子电池健康状态估计[J]. 储能科学与技术, 2024, 13(9): 3059-3071. | 
| [10] | 田成文, 孙丙香, 赵鑫泽, 付智城, 马仕昌, 赵博, 张旭博. 基于数据驱动的锂离子电池快速寿命预测[J]. 储能科学与技术, 2024, 13(9): 3103-3111. | 
| [11] | 周国兵, 许审镇. 锂金属负极固态电解质界面膜形成和生长机理的理论研究进展[J]. 储能科学与技术, 2024, 13(9): 3150-3160. | 
| [12] | 李清波, 张懋慧, 罗英, 吕桃林, 解晶莹. 基于等效电路模型融合电化学原理的锂离子电池荷电状态估计[J]. 储能科学与技术, 2024, 13(9): 3072-3083. | 
| [13] | 何智峰, 陶远哲, 胡泳钢, 王其聪, 杨勇. 机器学习强化的电化学阻抗谱技术及其在锂离子电池研究中的应用[J]. 储能科学与技术, 2024, 13(9): 2933-2951. | 
| [14] | 孙丙香, 杨鑫, 周兴振, 马仕昌, 王志豪, 张维戈. 基于简化阻抗模型和比较元启发式算法的锂离子电池参数辨识方法[J]. 储能科学与技术, 2024, 13(9): 2952-2962. | 
| [15] | 黄煜峰, 梁焕超, 许磊. 基于卡尔曼滤波算法优化Transformer模型的锂离子电池健康状态预测方法[J]. 储能科学与技术, 2024, 13(8): 2791-2802. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||