储能科学与技术 ›› 2024, Vol. 13 ›› Issue (1): 130-142.doi: 10.19799/j.cnki.2095-4239.2023.0777

• 高比能二次电池关键材料与先进表征专刊 • 上一篇    下一篇

锂离子电池快充石墨负极材料研究进展

廖雅贇1,2(), 周峰2, 张颖曦2, 吕途安2, 何阳2, 陈晓燕2, 霍开富2()   

  1. 1.华中科技大学中欧清洁与可再生能源学院
    2.华中科技大学武汉光电国家研究中心,湖北 武汉 430074
  • 收稿日期:2023-10-31 修回日期:2023-11-15 出版日期:2024-01-05 发布日期:2024-01-22
  • 通讯作者: 霍开富 E-mail:liaoyy20000702@163.com;kfhuo@hust.edu.cn
  • 作者简介:廖雅贇(2000—),女,硕士研究生,研究方向为锂离子电池负极材料设计,E-mail:liaoyy20000702@163.com
  • 基金资助:
    国家重点研发计划资助(2022YFB2404800)

Research progress on fast-charging graphite anode materials for lithium-ion batteries

Yayun LIAO1,2(), Feng ZHOU2, Yingxi ZHANG2, Tu'an LV2, Yang HE2, Xiaoyan CHEN2, Kaifu HUO2()   

  1. 1.China -EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology
    2.Wuhan photoelectric National Research Center, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
  • Received:2023-10-31 Revised:2023-11-15 Online:2024-01-05 Published:2024-01-22
  • Contact: Kaifu HUO E-mail:liaoyy20000702@163.com;kfhuo@hust.edu.cn

摘要: <graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="2095-4239-2024-13-1-130/5F951AD1-2A55-4d44-A1EF-DE0BCAD0CFCA-F501.jpg"/></sec></p> <form name="refForm" action="showCorrelativeArticle.do" method=post target=_blank> <input type="hidden" name="searchSQL" value="" /> <input type=hidden name="keyword" value="" id="keyword"> <input type=hidden name="author" value="" id="author"> <p><strong>关键词: </strong> <a href="#" onClick="searchKeyword('https://esst.cip.com.cn','1','锂离子电池')">锂离子电池, </a> <a href="#" onClick="searchKeyword('https://esst.cip.com.cn','1','石墨负极')">石墨负极, </a> <a href="#" onClick="searchKeyword('https://esst.cip.com.cn','1','改性策略')">改性策略, </a> <a href="#" onClick="searchKeyword('https://esst.cip.com.cn','1','快充性能')">快充性能, </a> <a href="#" onClick="searchKeyword('https://esst.cip.com.cn','1','功率特性')">功率特性</a> </p> <p><strong>Abstract: </strong><p>Lithium-ion batteries (LIBs) currently dominate the electric vehicle and energy-storage sectors. However, conventional LIBs using graphite anode materials suffer from slow lithium diffusion dynamics and Li metal plating, particularly under fast-charging conditions. These limitations hinder our ability to meet the growing demand for fast-charging and discharging applications. In this review, we analyze the main challenges associated with fast-charging graphite anode materials, including their intrinsic layered structure and large concentration polarization. Furthermore, we summarize the methods developed to improve the fast-charging performance of graphite anodes through structural design, chemical modification, and surface coating strategies. The mechanisms of high ion electron diffusion and low interface resistance in fast-charging graphite anode materials have been emphasized. Finally, the current issues and possible future research directions in this field are discussed. Based on previous studies, we propose that hard-carbon-coated microcrystalline graphite is a promising anode material for high-power and high-energy-density LIBs.</p></p> <p><strong>Key words: </strong> <a href="#" onClick="searchEnKeyword('https://esst.cip.com.cn','1','lithium-ion battery')">lithium-ion battery, </a> <a href="#" onClick="searchEnKeyword('https://esst.cip.com.cn','1','graphite anode')">graphite anode, </a> <a href="#" onClick="searchEnKeyword('https://esst.cip.com.cn','1','modification strategies')">modification strategies, </a> <a href="#" onClick="searchEnKeyword('https://esst.cip.com.cn','1','fast-charging')">fast-charging, </a> <a href="#" onClick="searchEnKeyword('https://esst.cip.com.cn','1','power performance')">power performance</a> </p> </form> <!-- 分类号查询跳转 --> <form name="subjectSchemeForm" action="" method=post target=_blank> <input type="hidden" name="searchSQL" /> <input type="hidden" name="language" /> </form> <!--分类号--> <p> <strong> 中图分类号:  </strong> </p> <ul class="list-unstyled pacs"> <li> <p> <a href="#" onclick="subjectScheme('https://esst.cip.com.cn','TM 912','1');return false;" target="_blank"> TM 912 </a> </p> </li> </ul> <!--分类号end--> <div class="row hidden-xs hidden-sm"> <div class="col-xs-12 col-sm-2 col-md-2 col-lg-2 margin-bottom-10 text-center"> <div class="text-primary btn-menu"> <h4>引用本文</h4> </div> </div> <div class="col-xs-12 col-sm-10 col-md-10 col-lg-10 margin-bottom-10"> <div class="primary-border"> <p>廖雅贇, 周峰, 张颖曦, 吕途安, 何阳, 陈晓燕, 霍开富. 锂离子电池快充石墨负极材料研究进展[J]. 储能科学与技术, 2024, 13(1): 130-142. </p> <p>Yayun LIAO, Feng ZHOU, Yingxi ZHANG, Tu'an LV, Yang HE, Xiaoyan CHEN, Kaifu HUO. Research progress on fast-charging graphite anode materials for lithium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(1): 130-142.</p> </div> </div> </div> <div class="row hidden-xs hidden-sm"> <div class="col-xs-12 col-sm-2 col-md-2 col-lg-2 margin-bottom-10 text-center"> <div class="btn-menu bs-callout-warning"> <h4>使用本文</h4> </div> </div> <div class="col-xs-12 col-sm-10 col-md-10 col-lg-10 margin-bottom-10"> <div class="primary-border"> <p> <b> <form name=mail action="https://esst.cip.com.cn/CN/article/sendMail.jsp" method=post target=_blank> <div class="bshare-custom pull-left"><div class="bsPromo bsPromo2"></div><a title="分享到微信" class="bshare-weixin" href="javascript:void(0);"></a><a title="分享到新浪微博" class="bshare-sinaminiblog" href="javascript:void(0);"></a><a title="分享到QQ空间" class="bshare-qzone"></a><a title="分享到腾讯微博" class="bshare-qqmb"></a><a title="更多平台" class="bshare-more bshare-more-icon more-style-addthis"></a><span class="BSHARE_COUNT bshare-share-count" style="float: none;">0</span></div><script type="text/javascript" charset="utf-8" src="https://static.bshare.cn/b/buttonLite.js#style=-1&uuid=&pophcol=2&lang=zh"></script><script type="text/javascript" charset="utf-8" src="https://static.bshare.cn/b/bshareC0.js"></script>     /   <a href="#" id="collectArticle" class="shouc"></a> <span id="collectCount"></span> /   <a onclick="mail.submit()" href="javascript:void(null)" class="tuij">推荐</a> <input type="hidden" value='我在《储能科学与技术》上发现了关于“锂离子电池快充石墨负极材料研究进展”的文章,特向您推荐。请打开下面的网址:https://esst.cip.com.cn/CN/abstract/abstract2525.shtml' name="neirong"> <input type="hidden" name="thishref" value="https://esst.cip.com.cn/CN/abstract/abstract2525.shtml"> <input type="hidden" name="jname" value="储能科学与技术"> <input type="hidden" name="title" value='锂离子电池快充石墨负极材料研究进展'> <form> </b> </p> <p><b>导出引用管理器</b> <span class="daochu"><a href="https://esst.cip.com.cn/CN/article/getTxtFile.do?fileType=EndNote&id=2525" id="ris_export">EndNote</a>|<a href="https://esst.cip.com.cn/CN/article/getTxtFile.do?fileType=Ris&id=2525">Reference Manager</a>|<a href="https://esst.cip.com.cn/CN/article/getTxtFile.do?fileType=ProCite&id=2525">ProCite</a>|<a id="bibtex_export" href="https://esst.cip.com.cn/CN/article/getTxtFile.do?fileType=BibTeX&id=2525">BibTeX</a>|<a href="https://esst.cip.com.cn/CN/article/getTxtFile.do?fileType=RefWorks&id=2525">RefWorks</a></span> </p> <p><strong>链接本文:</strong> <a href="https://esst.cip.com.cn/CN/10.19799/j.cnki.2095-4239.2023.0777" class="txt_zhaiyao1">https://esst.cip.com.cn/CN/10.19799/j.cnki.2095-4239.2023.0777</a> </p> <p> <strong> </strong>              <a href="https://esst.cip.com.cn/CN/Y2024/V13/I1/130" class="txt_zhaiyao1"> https://esst.cip.com.cn/CN/Y2024/V13/I1/130</a> </p> </div> </div> </div> </div> </div> </div> <div class="panel panel-default" > <div class="panel-heading" role="tab" id="tubiao" onClick="xianshi(this)"> <h4 class="panel-title"> <a id="figure" class="collapsed" href="javascript:;"> 图/表 <span class="badge badge-info">8</span> </a> </h4> </div> <div id="collapseTwo" class="panel-collapse collapse" role="tabpanel" aria-labelledby="headingTwo" style="display: none;"> <div class="panel-body"> <!--start--> <div class="row figureCon"> <div class="col-lg-3 col-md-4 col-sm-6"> <div class="thumbnail"> <a class="figureClass" href="#figureClass34201" data-toggle="tooltip" data-placement="bottom" data-original-title="图1  LIBs工作原理及充电过程示意图" data-original-title="图1  LIBs工作原理及充电过程示意图"> <img src="https://esst.cip.com.cn/fileup/2095-4239/FIGURE/2024-13-1/Images/2095-4239-2024-13-1-130/thumbnail/5F951AD1-2A55-4d44-A1EF-DE0BCAD0CFCA-F001.jpg"> </a> <div style='display:none'> <div id='figureClass34201' style='padding:10px; background:#fff;'> <p style="text-align: center;"><b>图1</b></p> <p style="text-align: center;">LIBs工作原理及充电过程示意图"</p> <img src="https://esst.cip.com.cn/fileup/2095-4239/FIGURE/2024-13-1/Images/2095-4239-2024-13-1-130/5F951AD1-2A55-4d44-A1EF-DE0BCAD0CFCA-F001.jpg" style="display:block;margin:0 auto;width: 80%;"/> </div> </div> <div class="caption text-center hidden-xs hidden-sm"> 图1 </div> </div> </div> <div class="col-lg-3 col-md-4 col-sm-6"> <div class="thumbnail"> <a class="figureClass" href="#figureClass34202" data-toggle="tooltip" data-placement="bottom" data-original-title="图2  快充石墨面临的主要挑战:(a) 石墨负极1 C倍率下100%荷电状态的析锂现象[27];(b) 石墨负极中心加热/未加热扣式电池在2 C倍率下的电压曲线[28];(c) 中心加热的石墨负极快充后高温区域表面发生析锂[28];(d) Li+ 在石墨中的各向异性的扩散示意图;(e) 石墨电极浓差极化示意图;(f) 石墨负极锂化过程中Li+ 的浓度分布照片[35]" data-original-title="图2  快充石墨面临的主要挑战:(a) 石墨负极1 C倍率下100%荷电状态的析锂现象[27];(b) 石墨负极中心加热/未加热扣式电池在2 C倍率下的电压曲线[28];(c) 中心加热的石墨负极快充后高温区域表面发生析锂[28];(d) Li+ 在石墨中的各向异性的扩散示意图;(e) 石墨电极浓差极化示意图;(f) 石墨负极锂化过程中Li+ 的浓度分布照片[35]"> <img src="https://esst.cip.com.cn/fileup/2095-4239/FIGURE/2024-13-1/Images/2095-4239-2024-13-1-130/thumbnail/5F951AD1-2A55-4d44-A1EF-DE0BCAD0CFCA-F002.jpg"> </a> <div style='display:none'> <div id='figureClass34202' style='padding:10px; background:#fff;'> <p style="text-align: center;"><b>图2</b></p> <p style="text-align: center;">快充石墨面临的主要挑战:(a) 石墨负极1 C倍率下100%荷电状态的析锂现象[27];(b) 石墨负极中心加热/未加热扣式电池在2 C倍率下的电压曲线[28];(c) 中心加热的石墨负极快充后高温区域表面发生析锂[28];(d) Li+ 在石墨中的各向异性的扩散示意图;(e) 石墨电极浓差极化示意图;(f) 石墨负极锂化过程中Li+ 的浓度分布照片[35]"</p> <img src="https://esst.cip.com.cn/fileup/2095-4239/FIGURE/2024-13-1/Images/2095-4239-2024-13-1-130/5F951AD1-2A55-4d44-A1EF-DE0BCAD0CFCA-F002.jpg" style="display:block;margin:0 auto;width: 80%;"/> </div> </div> <div class="caption text-center hidden-xs hidden-sm"> 图2 </div> </div> </div> <div class="col-lg-3 col-md-4 col-sm-6"> <div class="thumbnail"> <a class="figureClass" href="#figureClass34203" data-toggle="tooltip" data-placement="bottom" data-original-title="图3  快充石墨负极结构设计:(a) 酸处理石墨和KOH蚀刻石墨的制备示意图 (KOH蚀刻石墨层间距增加的同时表面产生孔隙,促进Li+ 的传输,提升其快充性能)[39];(b) GFms复合电极在不同放电电流密度下的电压曲线 (电流从0.2 C增加到30 C时,容量保持率高达92%)[40];(c) 施加磁场使石墨颗粒垂直于集流体及Li+ 扩散路径示意图(该结构缩短了Li+ 扩散距离,提高了Li+ 扩散速率)[46]" data-original-title="图3  快充石墨负极结构设计:(a) 酸处理石墨和KOH蚀刻石墨的制备示意图 (KOH蚀刻石墨层间距增加的同时表面产生孔隙,促进Li+ 的传输,提升其快充性能)[39];(b) GFms复合电极在不同放电电流密度下的电压曲线 (电流从0.2 C增加到30 C时,容量保持率高达92%)[40];(c) 施加磁场使石墨颗粒垂直于集流体及Li+ 扩散路径示意图(该结构缩短了Li+ 扩散距离,提高了Li+ 扩散速率)[46]"> <img src="https://esst.cip.com.cn/fileup/2095-4239/FIGURE/2024-13-1/Images/2095-4239-2024-13-1-130/thumbnail/5F951AD1-2A55-4d44-A1EF-DE0BCAD0CFCA-F003.jpg"> </a> <div style='display:none'> <div id='figureClass34203' style='padding:10px; background:#fff;'> <p style="text-align: center;"><b>图3</b></p> <p style="text-align: center;">快充石墨负极结构设计:(a) 酸处理石墨和KOH蚀刻石墨的制备示意图 (KOH蚀刻石墨层间距增加的同时表面产生孔隙,促进Li+ 的传输,提升其快充性能)[39];(b) GFms复合电极在不同放电电流密度下的电压曲线 (电流从0.2 C增加到30 C时,容量保持率高达92%)[40];(c) 施加磁场使石墨颗粒垂直于集流体及Li+ 扩散路径示意图(该结构缩短了Li+ 扩散距离,提高了Li+ 扩散速率)[46]"</p> <img src="https://esst.cip.com.cn/fileup/2095-4239/FIGURE/2024-13-1/Images/2095-4239-2024-13-1-130/5F951AD1-2A55-4d44-A1EF-DE0BCAD0CFCA-F003.jpg" style="display:block;margin:0 auto;width: 80%;"/> </div> </div> <div class="caption text-center hidden-xs hidden-sm"> 图3 </div> </div> </div> <div class="col-lg-3 col-md-4 col-sm-6"> <div class="thumbnail"> <a class='inline' href="#inline_content34204" data-toggle="tooltip" data-placement="bottom" data-original-title="表1  石墨负极材料的结构设计策略及其电化学性能比较"> <img src="https://esst.cip.com.cn/images/table-icon.gif"> </a> <div style='display:none'> <div id='inline_content34204' style='padding:10px; background:#fff;'> <p style="text-align: center;"><b>表1</b></p> <p style="text-align: center;">石墨负极材料的结构设计策略及其电化学性能比较"</p> <table id="Table1"><thead><tr><th align="center" style="border-top:solid;border-bottom:solid;">改性策略</th><th align="center" style="border-top:solid;border-bottom:solid;">具体措施</th><th align="center" style="border-top:solid;border-bottom:solid;">比容量/(mAh/g)</th><th align="center" style="border-top:solid;border-bottom:solid;">容量保持率</th><th align="center" style="border-top:solid;border-bottom:solid;">引用</th></tr></thead><tbody><tr align="center"><td align="center" rowspan="12" style="border-bottom:solid;">结构设计</td><td align="center">利用过氧化氢获得微膨胀层状球形石墨</td><td align="center">188 (1 C)</td><td align="center">—</td><td align="center">[<xref ref-type="bibr" rid="R37">37</xref>]</td></tr><tr align="center"><td align="center">采用热剥离制备开放式/半开放式孔结构的膨胀石墨</td><td align="center">112 (3 A/g)</td><td align="center">500次循环后93 % (1 A/g)</td><td align="center">[<xref ref-type="bibr" rid="R38">38</xref>]</td></tr><tr align="center"><td align="center">酸氧化和KOH蚀刻石墨</td><td align="center">240 (0.6 A/g)</td><td align="center">1000次循环后96 % (1 A/g)</td><td align="center">[<xref ref-type="bibr" rid="R39">39</xref>]</td></tr><tr align="center"><td align="center">利用中间相沥青制备多孔石墨泡沫(GFms)</td><td align="center">345.3 (30 C)</td><td align="center">50次循环后90.12% (1 C)</td><td align="center">[<xref ref-type="bibr" rid="R40">40</xref>]</td></tr><tr align="center"><td align="center">KOH腐蚀获得具有纳米级孔隙结构的石墨</td><td align="center">—</td><td align="center">100次循环后96.7% (2.5 C)</td><td align="center">[<xref ref-type="bibr" rid="R41">41</xref>]</td></tr><tr align="center"><td align="center">空气氧化制备多通道石墨</td><td align="center">—</td><td align="center">3000次循环后85% (6 C)</td><td align="center">[<xref ref-type="bibr" rid="R42">42</xref>]</td></tr><tr align="center"><td align="center">带通孔的石墨片和CNTs组成的复合电极</td><td align="center">220 (8 C)</td><td align="center">500次循环后90% (4 C)</td><td align="center">[<xref ref-type="bibr" rid="R43">43</xref>]</td></tr><tr align="center"><td align="center">KOH高温蚀刻制备多通道结构石墨</td><td align="center">125 (1 C)</td><td align="center">100次循环后74% (6 C)</td><td align="center">[<xref ref-type="bibr" rid="R44">44</xref>]</td></tr><tr align="center"><td align="center">具有活化边缘的石墨</td><td align="center">150.3 (10 C)</td><td align="center">700次循环后96.05% (5 C)</td><td align="center">[<xref ref-type="bibr" rid="R45">45</xref>]</td></tr><tr align="center"><td align="center">施加磁场制备垂直排列的石墨负极</td><td align="center">90 (2 C)</td><td align="center">—</td><td align="center">[<xref ref-type="bibr" rid="R46">46</xref>]</td></tr><tr align="center"><td align="center">采用激光测绘制备具有垂直多孔通道的3D石墨负极</td><td align="center">—</td><td align="center">600次循环后86% (6 C)</td><td align="center">[<xref ref-type="bibr" rid="R47">47</xref>]</td></tr><tr align="center"><td align="center" style="border-bottom:solid;">在石墨表面生长垂直石墨烯薄片</td><td align="center" style="border-bottom:solid;">105.4 (5 C)</td><td align="center" style="border-bottom:solid;">—</td><td align="center" style="border-bottom:solid;">[<xref ref-type="bibr" rid="R48">48</xref>]</td></tr></tbody></table> </div> </div> <div class="caption text-center hidden-xs hidden-sm"> 表1 </div> </div> </div> <div class="col-lg-3 col-md-4 col-sm-6"> <div class="thumbnail"> <a class="figureClass" href="#figureClass34205" data-toggle="tooltip" data-placement="bottom" data-original-title="图4  石墨负极化学修饰提升其充放电性能:(a) SEAG的制备过程 (该电极可以实现快速的Li+ 扩散)[56];(b) 原始石墨和PTFE改性石墨的合成示意图 (F掺杂有利于石墨中Li+ 的快速传输)[52];(c) LNO和石墨半电池在68~1360 mA/g下的倍率性能 (LNO半电池倍率性能显著提升)[58]" data-original-title="图4  石墨负极化学修饰提升其充放电性能:(a) SEAG的制备过程 (该电极可以实现快速的Li+ 扩散)[56];(b) 原始石墨和PTFE改性石墨的合成示意图 (F掺杂有利于石墨中Li+ 的快速传输)[52];(c) LNO和石墨半电池在68~1360 mA/g下的倍率性能 (LNO半电池倍率性能显著提升)[58]"> <img src="https://esst.cip.com.cn/fileup/2095-4239/FIGURE/2024-13-1/Images/2095-4239-2024-13-1-130/thumbnail/5F951AD1-2A55-4d44-A1EF-DE0BCAD0CFCA-F004.jpg"> </a> <div style='display:none'> <div id='figureClass34205' style='padding:10px; background:#fff;'> <p style="text-align: center;"><b>图4</b></p> <p style="text-align: center;">石墨负极化学修饰提升其充放电性能:(a) SEAG的制备过程 (该电极可以实现快速的Li+ 扩散)[56];(b) 原始石墨和PTFE改性石墨的合成示意图 (F掺杂有利于石墨中Li+ 的快速传输)[52];(c) LNO和石墨半电池在68~1360 mA/g下的倍率性能 (LNO半电池倍率性能显著提升)[58]"</p> <img src="https://esst.cip.com.cn/fileup/2095-4239/FIGURE/2024-13-1/Images/2095-4239-2024-13-1-130/5F951AD1-2A55-4d44-A1EF-DE0BCAD0CFCA-F004.jpg" style="display:block;margin:0 auto;width: 80%;"/> </div> </div> <div class="caption text-center hidden-xs hidden-sm"> 图4 </div> </div> </div> <div class="col-lg-3 col-md-4 col-sm-6"> <div class="thumbnail"> <a class='inline' href="#inline_content34206" data-toggle="tooltip" data-placement="bottom" data-original-title="表2  石墨负极材料化学修饰策略及其电化学性能比较"> <img src="https://esst.cip.com.cn/images/table-icon.gif"> </a> <div style='display:none'> <div id='inline_content34206' style='padding:10px; background:#fff;'> <p style="text-align: center;"><b>表2</b></p> <p style="text-align: center;">石墨负极材料化学修饰策略及其电化学性能比较"</p> <table id="Table2"><thead><tr><th align="center" style="border-top:solid;border-bottom:solid;">改性策略</th><th align="center" style="border-top:solid;border-bottom:solid;">具体措施</th><th align="center" style="border-top:solid;border-bottom:solid;">比容量/(mAh/g)</th><th align="center" style="border-top:solid;border-bottom:solid;">容量保持率</th><th align="center" style="border-top:solid;border-bottom:solid;">引用</th></tr></thead><tbody><tr align="center"><td align="center" rowspan="7" style="border-bottom:solid;">化学修饰</td><td align="center">Si/边缘活化石墨复合电极</td><td align="center">525 (3 C)</td><td align="center">50次循环后99.3% (3 C)</td><td align="center">[<xref ref-type="bibr" rid="R56">56</xref>]</td></tr><tr align="center"><td align="center">硼酸球磨石墨</td><td align="center">330 (5 C)</td><td align="center">—</td><td align="center">[<xref ref-type="bibr" rid="R51">51</xref>]</td></tr><tr align="center"><td align="center">聚四氟乙烯改性石墨</td><td align="center">318 (0.186 A/g)</td><td align="center">60次循环后98.2% (0.1 C)</td><td align="center">[<xref ref-type="bibr" rid="R52">52</xref>]</td></tr><tr align="center"><td align="center">N掺杂的空心结构石墨</td><td align="center">305 (1 A/g)</td><td align="center">500次循环后98% (1 A/g)</td><td align="center">[<xref ref-type="bibr" rid="R53">53</xref>]</td></tr><tr align="center"><td align="center">氯化钾与石墨混合制备掺K石墨</td><td align="center">269.7 (1 C)</td><td align="center">—</td><td align="center">[<xref ref-type="bibr" rid="R57">57</xref>]</td></tr><tr align="center"><td align="center">石墨浆料中加入LNO制备掺F石墨</td><td align="center">291.7 (0.68 A/g)</td><td align="center">200次循环后85.7% (0.34 A/g)</td><td align="center">[<xref ref-type="bibr" rid="R58">58</xref>]</td></tr><tr align="center"><td align="center" style="border-bottom:solid;">利用H<sub>3</sub>PO<sub>4</sub>和H<sub>3</sub>BO<sub>3</sub>制备掺P、掺B石墨</td><td align="center" style="border-bottom:solid;">—</td><td align="center" style="border-bottom:solid;">掺P,掺B>95% (5 C/0.2 C)</td><td align="center" style="border-bottom:solid;">[<xref ref-type="bibr" rid="R59">59</xref>]</td></tr></tbody></table> </div> </div> <div class="caption text-center hidden-xs hidden-sm"> 表2 </div> </div> </div> <div class="col-lg-3 col-md-4 col-sm-6"> <div class="thumbnail"> <a class="figureClass" href="#figureClass34207" data-toggle="tooltip" data-placement="bottom" data-original-title="图5  快充石墨负极表面包覆:(a) 硬碳包覆石墨微观形貌示意图[63];(b) TiO2-x @石墨核壳结构 (TiO2-x 涂层有助于降低电极和电解质之间的界面电阻)[66];(c) 包覆不同厚度Al2O3 的石墨在不同电流密度下的倍率性能 [1% (质量分数) Al2O3 的石墨负极在100 mA/g电流密度下可逆比容量约为337.1 mAh/g][67];(d) MoO x -MoP x /石墨负极材料制备过程 (MoO x 和纳米级MoP x 在快充过程中可以有效抑制析锂)[68]" data-original-title="图5  快充石墨负极表面包覆:(a) 硬碳包覆石墨微观形貌示意图[63];(b) TiO2-x @石墨核壳结构 (TiO2-x 涂层有助于降低电极和电解质之间的界面电阻)[66];(c) 包覆不同厚度Al2O3 的石墨在不同电流密度下的倍率性能 [1% (质量分数) Al2O3 的石墨负极在100 mA/g电流密度下可逆比容量约为337.1 mAh/g][67];(d) MoO x -MoP x /石墨负极材料制备过程 (MoO x 和纳米级MoP x 在快充过程中可以有效抑制析锂)[68]"> <img src="https://esst.cip.com.cn/fileup/2095-4239/FIGURE/2024-13-1/Images/2095-4239-2024-13-1-130/thumbnail/5F951AD1-2A55-4d44-A1EF-DE0BCAD0CFCA-F005.jpg"> </a> <div style='display:none'> <div id='figureClass34207' style='padding:10px; background:#fff;'> <p style="text-align: center;"><b>图5</b></p> <p style="text-align: center;">快充石墨负极表面包覆:(a) 硬碳包覆石墨微观形貌示意图[63];(b) TiO2-x @石墨核壳结构 (TiO2-x 涂层有助于降低电极和电解质之间的界面电阻)[66];(c) 包覆不同厚度Al2O3 的石墨在不同电流密度下的倍率性能 [1% (质量分数) Al2O3 的石墨负极在100 mA/g电流密度下可逆比容量约为337.1 mAh/g][67];(d) MoO x -MoP x /石墨负极材料制备过程 (MoO x 和纳米级MoP x 在快充过程中可以有效抑制析锂)[68]"</p> <img src="https://esst.cip.com.cn/fileup/2095-4239/FIGURE/2024-13-1/Images/2095-4239-2024-13-1-130/5F951AD1-2A55-4d44-A1EF-DE0BCAD0CFCA-F005.jpg" style="display:block;margin:0 auto;width: 80%;"/> </div> </div> <div class="caption text-center hidden-xs hidden-sm"> 图5 </div> </div> </div> <div class="col-lg-3 col-md-4 col-sm-6"> <div class="thumbnail"> <a class='inline' href="#inline_content34208" data-toggle="tooltip" data-placement="bottom" data-original-title="表3  石墨负极材料表面包覆策略及其电化学性能比较"> <img src="https://esst.cip.com.cn/images/table-icon.gif"> </a> <div style='display:none'> <div id='inline_content34208' style='padding:10px; background:#fff;'> <p style="text-align: center;"><b>表3</b></p> <p style="text-align: center;">石墨负极材料表面包覆策略及其电化学性能比较"</p> <table id="Table3"><thead><tr><th align="center" style="border-top:solid;border-bottom:solid;">改性策略</th><th align="center" style="border-top:solid;border-bottom:solid;">具体措施</th><th align="center" style="border-top:solid;border-bottom:solid;">比容量/(mAh/g)</th><th align="center" style="border-top:solid;border-bottom:solid;">容量保持率</th><th align="center" style="border-top:solid;border-bottom:solid;">引用</th></tr></thead><tbody><tr align="center"><td align="center" rowspan="7" style="border-bottom:solid;">表面包覆</td><td align="center">纳米级涡轮层状碳包覆石墨</td><td align="center">—</td><td align="center">300次循环后87% (0.17 A/g)</td><td align="center">[<xref ref-type="bibr" rid="R64">64</xref>]</td></tr><tr align="center"><td align="center">沥青包覆石墨</td><td align="center">298 (5 C)</td><td align="center">83% (5 C/0.1 C)</td><td align="center">[<xref ref-type="bibr" rid="R65">65</xref>]</td></tr><tr align="center"><td align="center">TiO<sub>2-</sub><i><sub>x</sub></i> @石墨</td><td align="center">345.2 (10 C)</td><td align="center">98.2% (5 C/0.2 C)</td><td align="center">[<xref ref-type="bibr" rid="R66">66</xref>]</td></tr><tr align="center"><td align="center">Al<sub>2</sub>O<sub>3</sub>包覆石墨</td><td align="center">327.7 (4 A/g)</td><td align="center">100次循环后97.2% (4 A/g)</td><td align="center">[<xref ref-type="bibr" rid="R67">67</xref>]</td></tr><tr align="center"><td align="center">MoO <i><sub>x</sub></i> -MoP <i><sub>x</sub></i> /石墨</td><td align="center">143.3 (6 C)</td><td align="center">100次循环后86% (6 C)</td><td align="center">[<xref ref-type="bibr" rid="R68">68</xref>]</td></tr><tr align="center"><td align="center">SM包覆石墨</td><td align="center">—</td><td align="center">100次循环后72% (30 C)</td><td align="center">[<xref ref-type="bibr" rid="R69">69</xref>]</td></tr><tr align="center"><td align="center" style="border-bottom:solid;">PVDF包覆石墨</td><td align="center" style="border-bottom:solid;">—</td><td align="center" style="border-bottom:solid;">200次循环后96.3% (0.5 C)</td><td align="center" style="border-bottom:solid;">[<xref ref-type="bibr" rid="R70">70</xref>]</td></tr></tbody></table> </div> </div> <div class="caption text-center hidden-xs hidden-sm"> 表3 </div> </div> </div> </div> <!--end--> </div> </div> </div> <div class="panel panel-default" > <div class="panel-heading" role="tab" id="cankaowenxian" onClick="xianshi(this)"> <a name="reference"></a> <h4 class="panel-title"> <a id="reference" class="collapsed" href="javascript:;"> 参考文献 <span class="badge badge-info">82</span> </a> </h4> </div> <div id="collapseThree" class="panel-collapse collapse" role="tabpanel" aria-labelledby="headingThree" style="display: none;"> <div class="panel-body"> <!----> <table width="98%" border="0" align="center" cellpadding="0" cellspacing="8"> <tr> <td valign='top' align='right' style="padding-right:13px;">1</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>李泓. 未来的电池将朝着更高的比能量发展[R/OL]. [2022-03-31]. http://guoqing.china.com.cn/2022-03/31/content_78140922.htm.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">2</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>ZENG X Q, LI M, ABD EL-HADY D, et al. Commercialization of lithium battery technologies for electric vehicles[J]. Advanced Energy Materials, 2019, 9(27): 1900161-1900185.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">3</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>WANG G, YU M H, FENG X L. Carbon materials for ion-intercalation involved rechargeable battery technologies[J]. Chemical Society Reviews, 2021, 50(4): 2388-2443.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">4</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>ZHANG Z, ZHAO D, XU Y, et al. A review on electrode materials of fast-charging lithium-ion batteries[J]. The Chemical Record, 2022, 22(10): e202200127-e202200143.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">5</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>XIA H R, ZHANG W, CAO S K, et al. A figure of merit for fast-charging Li-ion battery materials[J]. ACS Nano, 2022, 16(6): 8525-8530.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">6</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>USABC. USABC goals for low-cost / fast-charge advanced batteries for electric vehicles applications[R/OL]. [2022-12-20]. http://uscar.org/usabc/.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">7</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>ZHU G L, ZHAO C Z, HUANG J Q, et al. Fast charging lithium batteries: Recent progress and future prospects[J]. Small, 2019, 15(15): e1805389.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">8</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>BURNHAM A, DUFEK E J, STEPHENS T, et al. Enabling fast charging-Infrastructure and economic considerations[J]. Journal of Power Sources, 2017, 367: 237-249.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">9</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>COLLIN R, MIAO Y, YOKOCHI A, et al. Advanced electric vehicle fast-charging technologies[J]. Energies, 2019, 12(10): 1839.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">10</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>柯承志, 肖本胜, 李苗, 等. 电极材料储锂行为及其机制的原位透射电镜研究进展[J]. 储能科学与技术, 2021, 10(4): 1219-1236.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;"></td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>KE C Z, XIAO B S, LI M, et al. Research progress in understanding of lithium storage behavior and reaction mechanism of electrode materials through <i>in situ</i> transmission electron microscopy[J]. Energy Storage Science and Technology, 2021, 10(4): 1219-1236.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">11</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>TOMASZEWSKA A, CHU Z Y, FENG X N, et al. Lithium-ion battery fast charging: A review[J]. eTransportation, 2019, 1: 100011.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">12</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>WANG C Y, LIU T, YANG X G, et al. Fast charging of energy-dense lithium-ion batteries[J]. Nature, 2022, 611(7936): 485-490.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">13</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>BABU B, SIMON P, BALDUCCI A. Fast charging materials for high power applications[J]. Advanced Energy Materials, 2020, 10(29): 2001128-2001161.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">14</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>HE J H, MENG J K, HUANG Y H. Challenges and recent progress in fast-charging lithium-ion battery materials[J]. Journal of Power Sources, 2023. 570: 232965-232981.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">15</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>HUANG Q K, NI S Y, JIAO M L, et al. Aligned carbon-based electrodes for fast-charging batteries: A review[J]. Small, 2021, 17(48): 2007676-2007701.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">16</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>LIU Y Y, SHI H D, WU Z S. Recent status, key strategies and challenging perspectives of fast-charging graphite anodes for lithium-ion batteries[J]. Energy & Environmental Science, 2023, 16(11): 4834-4871.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">17</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>WENG S T, YANG G J, ZHANG S M, et al. Kinetic limits of graphite anode for fast-charging lithium-ion batteries[J]. Nano-Micro Letters, 2023, 15(1): 215.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">18</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>LIU Q Q, DU C Y, SHEN B, et al. Understanding undesirable anode lithium plating issues in lithium-ion batteries[J]. RSC Advances, 2016, 6(91): 88683-88700.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">19</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>MAO C Y, RUTHER R E, LI J L, et al. Identifying the limiting electrode in lithium ion batteries for extreme fast charging[J]. Electrochemistry Communications, 2018, 97: 37-41.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">20</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>YANG X G, WANG C Y. Understanding the trilemma of fast charging, energy density and cycle life of lithium-ion batteries[J]. Journal of Power Sources, 2018, 402: 489-498.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">21</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>LI L, ZHANG D, DENG J P, et al. Carbon-based materials for fast charging lithium-ion batteries[J]. Carbon, 2021, 183: 721-734.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">22</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">23</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>LIU Y Y, ZHU Y Y, CUI Y. Challenges and opportunities towards fast-charging battery materials[J]. Nature Energy, 2019, 4(7): 540-550.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">24</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>HEUBNER C, NIKOLOWSKI K, REUBER S, et al. Recent insights into rate performance limitations of Li-ion batteries[J]. Batteries & Supercaps, 2021, 4(2): 268-285.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">25</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>ZHANG S S. Challenges and strategies for fast charge of Li-ion batteries[J]. ChemElectroChem, 2020, 7(17): 3569-3577.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">26</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>WEISS M, RUESS R, KASNATSCHEEW J, et al. Fast charging of lithium-ion batteries: A review of materials aspects[J]. Advanced Energy Materials, 2021, 11(33): 2101126-2101162.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">27</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>HO A S, PARKINSON D Y, FINEGAN D P, et al. 3D detection of lithiation and lithium plating in graphite anodes during fast charging[J]. ACS Nano, 2021, 15(6): 10480-10487.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">28</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>WANG H S, ZHU Y Y, KIM S C, et al. Underpotential lithium plating on graphite anodes caused by temperature heterogeneity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(47): 29453-29461.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">29</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>YAO F, GÜNEŞ F, TA H Q, et al. Diffusion mechanism of lithium ion through basal plane of layered graphene[J]. Journal of the American Chemical Society, 2012, 134(20): 8646-8654.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">30</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>SHI P C, LIN M, ZHENG H, et al. Effect of propylene carbonate-Li<sup>+</sup> solvation structures on graphite exfoliation and its application in Li-ion batteries[J]. Electrochimica Acta, 2017, 247: 12-18.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">31</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>ASENBAUER J, EISENMANN T, KUENZEL M, et al. The success story of graphite as a lithium-ion anode material-fundamentals, remaining challenges, and recent developments including silicon (oxide) composites[J]. Sustainable Energy & Fuels, 2020, 4(11): 5387-5416.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">32</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>DIDIER C, PANG W K, GUO Z P, et al. Phase evolution and intermittent disorder in electrochemically lithiated graphite determined using in operando neutron diffraction[J]. Chemistry of Materials, 2020, 32(6): 2518-2531.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">33</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>VETTER J, NOVÁK P, WAGNER M R, et al. Ageing mechanisms in lithium-ion batteries[J]. Journal of Power Sources, 2005, 147(1/2): 269-281.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">34</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>GUO Y T, LI X H, GUO H J, et al. Visualization of concentration polarization in thick electrodes[J]. Energy Storage Materials, 2022, 51: 476-485.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">35</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>YANG W, XIE H M, SHI B Q, et al. <i>In-situ</i> experimental measurements of lithium concentration distribution and strain field of graphite electrodes during electrochemical process[J]. Journal of Power Sources, 2019, 423: 174-182.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">36</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>WAN J Y, XIE J, KONG X A, et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries[J]. Nature Nanotechnology, 2019, 14(7): 705-711.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">37</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>郭德超, 曾燮榕, 邓飞, 等. 微膨石墨锂离子电池负极材料的制备及电化学性能[J]. 新型炭材料, 2015, 30(5): 419-424.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;"></td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>GUO D C, ZENG X R, DENG F, et al. Preparation and electrochemical performance of expanded graphites as anode materials for a lithium-ion battery[J]. New Carbon Materials, 2015, 30(5): 419-424.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">38</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>SON D K, KIM J, RAJ M R, et al. Elucidating the structural redox behaviors of nanostructured expanded graphite anodes toward fast-charging and high-performance lithium-ion batteries[J]. Carbon, 2021, 175: 187-201.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">39</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>KIM J, NITHYA JEGHAN S M, LEE G. Superior fast-charging capability of graphite anode via facile surface treatment for lithium-ion batteries[J]. Microporous and Mesoporous Materials, 2020, 305: 110325.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">40</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>LIM S, KIM J H, YAMADA Y, et al. Improvement of rate capability by graphite foam anode for Li secondary batteries[J]. Journal of Power Sources, 2017, 355: 164-170.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">41</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>SHIM J H, LEE S H. Characterization of graphite etched with potassium hydroxide and its application in fast-rechargeable lithium ion batteries[J]. Journal of Power Sources, 2016, 324: 475-483.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">42</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>CHENG Q A, ZHANG Y. Multi-channel graphite for high-rate lithium ion battery[J]. Journal of the Electrochemical Society, 2018, 165(5): A1104-A1109.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">43</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>XU J, WANG X, YUAN N Y, et al. Graphite-based lithium ion battery with ultrafast charging and discharging and excellent low temperature performance[J]. Journal of Power Sources, 2019, 430: 74-79.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">44</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>CHENG Q, YUGE R, NAKAHARA K, et al. KOH etched graphite for fast chargeable lithium-ion batteries[J]. Journal of Power Sources, 2015, 284: 258-263.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">45</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>DU P, ZHANG B, CAO L, et al. Designed graphite with an activated edge for fast-charging lithium-ion storage properties[J]. Chemical Communications, 2022, 58(53): 7372-7375.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">46</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>BILLAUD J, BOUVILLE F, MAGRINI T, et al. Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries[J]. Nature Energy, 2016, 1: 16097.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">47</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>CHEN K H, NAMKOONG M J, GOEL V, et al. Efficient fast-charging of lithium-ion batteries enabled by laser-patterned three-dimensional graphite anode architectures[J]. Journal of Power Sources, 2020, 471: 228475.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">48</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>MU Y B, HAN M S, LI J Y, et al. Growing vertical graphene sheets on natural graphite for fast charging lithium-ion batteries[J]. Carbon, 2021, 173: 477-484.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">49</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>LI S Q, WANG K, ZHANG G F, et al. Fast charging anode materials for lithium-ion batteries: Current status and perspectives[J]. Advanced Functional Materials, 2022, 32(23): 2200796-2200831.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">50</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>CHEN X Y, ZHOU W, LIU J L, et al. Sulfur / nitrogen / oxygen tri-doped carbon nanospheres as an anode for potassium ion storage[J]. Journal of Energy Chemistry, 2023, 77: 338-347.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">51</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>YEO J S, PARK T H, SEO M H, et al. Enhancement of the rate capability of graphite via the introduction of boron-oxygen functional groups[J]. International Journal of Electrochemical Science, 2013, 8(1): 1308-1315.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">52</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>KANG S X, LUN H, QI Y X, et al. Boosted electrochemical performance of graphite anode enabled by polytetrafluoroethylene-derived F-doping[J]. Materials Chemistry and Physics, 2021, 261: 124214.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">53</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>YANG X Y, ZHAN C Z, REN X L, et al. Nitrogen-doped hollow graphite granule as anode materials for high-performance lithium-ion batteries[J]. Journal of Solid State Chemistry, 2021, 303: 122500.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">54</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>SHIM J, STRIEBEL K A. Electrochemical characterization of thermally oxidized natural graphite anodes in lithium-ion batteries[J]. Journal of Power Sources, 2007, 164(2): 862-867.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">55</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>LIN Y X, HUANG Z H, YU X L, et al. Mildly expanded graphite for anode materials of lithium ion battery synthesized with perchloric acid[J]. Electrochimica Acta, 2014, 116: 170-174.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">56</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>KIM N, CHAE S, MA J, et al. Fast-charging high-energy lithium-ion batteries via implantation of amorphous silicon nanolayer in edge-plane activated graphite anodes[J]. Nature Communications, 2017, 8: 812.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">57</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>WU Y, WANG L Y, LI Y F, et al. KCl-modified graphite as high performance anode material for lithium-ion batteries with excellent rate performance[J]. The Journal of Physical Chemistry C, 2017, 121(24): 13052-13058.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">58</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>QI W B, BEN L B, YU H L, et al. Improving the electrochemical cycling performance of anode materials via facile <i>in situ</i> surface deposition of a solid electrolyte layer[J]. Journal of Power Sources, 2019, 424: 150-157.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">59</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>PARK M S, LEE J, LEE J W, et al. Tuning the surface chemistry of natural graphite anode by H<sub>3</sub>PO<sub>4</sub> and H<sub>3</sub>BO<sub>3</sub> treatments for improving electrochemical and thermal properties[J]. Carbon, 2013, 62: 278-287.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">60</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>IM U S, HWANG J U, YUN J H, et al. The effect of mild activation on the electrochemical performance of pitch-coated graphite for the lithium-ion battery anode material[J]. Materials Letters, 2020, 278: 128421.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">61</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>WU Y S, WANG Y H, LEE Y H. Performance enhancement of spherical natural graphite by phenol resin in lithium ion batteries[J]. Journal of Alloys and Compounds, 2006, 426(1/2): 218-222.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">62</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>LIN J H, CHEN C Y. Thickness-controllable coating on graphite surface as anode materials using glucose-based suspending solutions for lithium-ion battery[J]. Surface and Coatings Technology, 2022, 436: 128270.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">63</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>LIM Y G, PARK J W, PARK M S, et al. Hard carbon-coated natural graphite electrodes for high-energy and power lithium-ion capacitors[J]. Bulletin of the Korean Chemical Society, 2015, 36(1): 150-155.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">64</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>CAI W L, YAN C, YAO Y X, et al. Rapid lithium diffusion in Order@Disorder pathways for fast-charging graphite anodes[J]. Small Structures, 2020, 1(1): 2000010-2000015.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">65</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>HAN Y J, KIM J, YEO J S, et al. Coating of graphite anode with coal tar pitch as an effective precursor for enhancing the rate performance in Li-ion batteries: Effects of composition and softening points of coal tar pitch[J]. Carbon, 2015, 94: 432-438.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">66</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>KIM D S, CHUNG D J, BAE J, et al. Surface engineering of graphite anode material with black TiO<sub>2-</sub> <i>x</i> for fast chargeable lithium ion battery[J]. Electrochimica Acta, 2017, 258: 336-342.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">67</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>KIM D S, KIM Y E, KIM H. Improved fast charging capability of graphite anodes <i>via</i> amorphous Al<sub>2</sub>O<sub>3</sub> coating for high power lithium ion batteries[J]. Journal of Power Sources, 2019, 422: 18-24.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">68</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>LEE S M, KIM J, MOON J, et al. A cooperative biphasic MoO<i>x</i>-MoP<i>x</i> promoter enables a fast-charging lithium-ion battery[J]. Nature Communications, 2021, 12: 39.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">69</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>SHI Q, LIU W J, QU Q T, et al. Robust solid/electrolyte interphase on graphite anode to suppress lithium inventory loss in lithium-ion batteries[J]. Carbon, 2017, 111: 291-298.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">70</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>LUO J, WU C G, SU L Y, et al. A proof-of-concept graphite anode with a lithium dendrite suppressing polymer coating[J]. Journal of Power Sources, 2018, 406: 63-69.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">71</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>HAN H, PARK H, KIL K C, et al. Microstructure control of the graphite anode with a high density for Li ion batteries with high energy density[J]. Electrochimica Acta, 2015, 166: 367-371.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">72</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>CHEN K H, GOEL V, NAMKOONG M J, et al. Enabling 6 C fast charging of Li-ion batteries with graphite/hard carbon hybrid anodes[J]. Advanced Energy Materials, 2021, 11(5): 2003336-2003347.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">73</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>何月德, 刘洪波, 石磊, 等. 改性球形微晶石墨用作锂离子电池负极材料的研究[J]. 湖南大学学报(自然科学版), 2009, 36(11): 44-46, 61.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;"></td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>HE Y D, LIU H B, SHI L, et al. Study on modified spherical microcrystalline graphite as anode materials for Li-ion batteries[J]. Journal of Hunan University (Natural Sciences), 2009, 36(11): 44-46, 61.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">74</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>何月德, 刘洪波, 洪泉, 等. 酚醛树脂炭包覆对天然微晶石墨电化学性能的影响[J]. 功能材料, 2013, 44(16): 2397-2400, 2405.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;"></td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>HE Y D, LIU H B, HONG Q, et al. Investigation on pyrolitic carbon-coated microcrystalline graphite as anode material for Li-ion batteries[J]. Journal of Functional Materials, 2013, 44(16): 2397-2400, 2405.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">75</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>SUN Y L, HAN F, ZHANG C Z, et al. FeCl<sub>3</sub> intercalated microcrystalline graphite enables high volumetric capacity and good cycle stability for lithium-ion batteries[J]. Energy Technology, 2019, 7(4): 1801091-1801099.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">76</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>HUANG P, LIU B, ZHANG J L, et al. Silicon/carbon composites based on natural microcrystalline graphite as anode for lithium-ion batteries[J]. Ionics, 2021, 27(5): 1957-1966.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">77</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>韩峰, 张春梅, 王剑秋.一种改性沥青包覆微晶石墨负极材料及其制备方法:CN115579470A.2023-01-06.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;"></td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>HAN F, ZHANG C M, WANG J Q. A modified asphalt coated microcrystalline graphite anode material and its preparation method: CN115579470A.2023-01-06.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">78</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>石磊, 邵浩明, 王志勇, 等.一种快充型微晶石墨负极材料及其制备方法:CN110395725B.2021-08-17.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;"></td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>SHI L, SHAO H M, WANG Z Y, et al. A fast charging microcrystalline graphite anode material and its preparation method: CN110395725B.2021-08-17.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">79</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>周海辉, 吴璇, 赖俊辉, 等.石墨负极材料、其制备方法和锂离子电池:CN111668480B.2023-07-28.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;"></td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>ZHOU H H, WU X, LAI J H, et al. Graphite anode material, its preparation method,and lithium-ion battery: CN111668480B.2023-07-28.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">80</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>周奇, 周晓航, 娄忠良.一种天然微晶石墨负极材料的制备方法及负极材料与应用:CN111115623B.2022-02-18.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;"></td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>ZHOU Q, ZHOU X H, LOU L L. Preparation method and application of a natural microcrystalline graphite anode material: CN111115623B.2022-02-18.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">81</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>GUO H, WANG Z S, XING B L, et al. Carbon nanosheets prepared with a vermiculite template for high-performance lithium-ion batteries via space-confined carbonization strategy[J]. Journal of Alloys and Compounds, 2023, 933: 167721.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;">82</td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>周奇, 文博, 谢志勇. 微晶石墨改性用作锂离子电池负极材料[J]. 功能材料, 2023, 54(2): 2167-2173.</span> </td> </tr> <tr> <td valign='top' align='right' style="padding-right:13px;"></td> <td style="padding-bottom: 13px;"> <span class='magtech_ref_source'>ZHOU Q, WEN B, XIE Z Y. Microcrystalline graphite modified as lithium-ion battery anode material[J]. Journal of Functional Materials, 2023, 54(2): 2167-2173.</span> </td> </tr> </table> <!--end--> </div> </div> </div> <div class="panel panel-default"> <div class="panel-heading" role="tab" id="xiangguanwenzhang" onClick="xianshi(this)"> <h4 class="panel-title"> <a id="relatedArticles" class="collapsed" href="javascript:;"> 相关文章 <span class="badge badge-info">15</span> </a> </h4> </div> <div id="collapseFour" class="panel-collapse collapse" role="tabpanel" aria-labelledby="headingFour" style="display: none;"> <div class="panel-body"> <table width="100%" border="0" height='25'> <tr> <td width="30" valign='top' style="line-height:30px;">[1]</td> <td class="J_zhaiyao" style="line-height:30px;" valign='top'>申小雨, 尹丛勃. <a href="https://esst.cip.com.cn/CN/10.19799/j.cnki.2095-4239.2023.0735" target="_blank" class="txt_zhaiyao">基于卷积<strong>Fastformer</strong>的锂离子电池健康状态估计</a>[J]. 储能科学与技术, 2024, 13(3): 990-999.</td> </tr> <tr> <td width="30" valign='top' style="line-height:30px;">[2]</td> <td class="J_zhaiyao" style="line-height:30px;" valign='top'>胡大林, 任潘利, 张昌明, 杨明阳, 卢周广. <a href="https://esst.cip.com.cn/CN/10.19799/j.cnki.2095-4239.2023.0741" target="_blank" class="txt_zhaiyao"><strong>Al-Y-Zr</strong>原位共掺杂提高<strong>4.53 V</strong>钴酸锂正极材料的循环性能</a>[J]. 储能科学与技术, 2024, 13(3): 742-748.</td> </tr> <tr> <td width="30" valign='top' style="line-height:30px;">[3]</td> <td class="J_zhaiyao" style="line-height:30px;" valign='top'>张稚国, 李华清, 王莉, 何向明. <a href="https://esst.cip.com.cn/CN/10.19799/j.cnki.2095-4239.2023.0763" target="_blank" class="txt_zhaiyao">锂离子电池塑料-金属复合集流体的特性及制备研究进展</a>[J]. 储能科学与技术, 2024, 13(3): 749-758.</td> </tr> <tr> <td width="30" valign='top' style="line-height:30px;">[4]</td> <td class="J_zhaiyao" style="line-height:30px;" valign='top'>刘剑, 于立博, 吴振兴, 牟介刚. <a href="https://esst.cip.com.cn/CN/10.19799/j.cnki.2095-4239.2023.0688" target="_blank" class="txt_zhaiyao">基于风冷的锂离子电池充放电设备热特性影响研究</a>[J]. 储能科学与技术, 2024, 13(3): 914-923.</td> </tr> <tr> <td width="30" valign='top' style="line-height:30px;">[5]</td> <td class="J_zhaiyao" style="line-height:30px;" valign='top'>武美玲, 牛磊, 李世友, 赵冬妮. <a href="https://esst.cip.com.cn/CN/10.19799/j.cnki.2095-4239.2023.0809" target="_blank" class="txt_zhaiyao">正极预锂化添加剂用于锂离子电池的研究进展</a>[J]. 储能科学与技术, 2024, 13(3): 759-769.</td> </tr> <tr> <td width="30" valign='top' style="line-height:30px;">[6]</td> <td class="J_zhaiyao" style="line-height:30px;" valign='top'>孙明明. <a href="https://esst.cip.com.cn/CN/10.19799/j.cnki.2095-4239.2023.0468" target="_blank" class="txt_zhaiyao">有机无机复合锂离子电池固态电解质专利分析</a>[J]. 储能科学与技术, 2024, 13(3): 1096-1105.</td> </tr> <tr> <td width="30" valign='top' style="line-height:30px;">[7]</td> <td class="J_zhaiyao" style="line-height:30px;" valign='top'>宋元明, 刘亚杰, 金光, 周星, 黄旭程. <a href="https://esst.cip.com.cn/CN/10.19799/j.cnki.2095-4239.2023.0568" target="_blank" class="txt_zhaiyao">锂离子电池<strong>/</strong>超级电容器混合储能系统能量管理方法综述</a>[J]. 储能科学与技术, 2024, 13(2): 652-668.</td> </tr> <tr> <td width="30" valign='top' style="line-height:30px;">[8]</td> <td class="J_zhaiyao" style="line-height:30px;" valign='top'>李校磊, 高健, 周伟东, 李泓. <a href="https://esst.cip.com.cn/CN/10.19799/j.cnki.2095-4239.2023.0577" target="_blank" class="txt_zhaiyao"><strong>COMSOL Multiphysics</strong>在锂离子电池中的应用</a>[J]. 储能科学与技术, 2024, 13(2): 546-567.</td> </tr> <tr> <td width="30" valign='top' style="line-height:30px;">[9]</td> <td class="J_zhaiyao" style="line-height:30px;" valign='top'>彭可, 张志成, 胡有章, 张旭辉, 周稼辉, 李彬. <a href="https://esst.cip.com.cn/CN/10.19799/j.cnki.2095-4239.2023.0496" target="_blank" class="txt_zhaiyao">基于有限元的热力耦合场匣钵运动分析与优化</a>[J]. 储能科学与技术, 2024, 13(2): 634-642.</td> </tr> <tr> <td width="30" valign='top' style="line-height:30px;">[10]</td> <td class="J_zhaiyao" style="line-height:30px;" valign='top'>雷旗开, 余胤, 彭鹏, 陈满, 金凯强, 王青松. <a href="https://esst.cip.com.cn/CN/10.19799/j.cnki.2095-4239.2023.0535" target="_blank" class="txt_zhaiyao">隔热材料布局方式对<strong>280 Ah</strong>磷酸铁锂电池热失控传播抑制效果的影响</a>[J]. 储能科学与技术, 2024, 13(2): 495-502.</td> </tr> <tr> <td width="30" valign='top' style="line-height:30px;">[11]</td> <td class="J_zhaiyao" style="line-height:30px;" valign='top'>李珂, 郝奕帆, 方振华, 王静, 张松通, 祝夏雨, 邱景义, 明海. <a href="https://esst.cip.com.cn/CN/10.19799/j.cnki.2095-4239.2023.0501" target="_blank" class="txt_zhaiyao">高功率化学电源体系发展及军事应用分析</a>[J]. 储能科学与技术, 2024, 13(2): 436-461.</td> </tr> <tr> <td width="30" valign='top' style="line-height:30px;">[12]</td> <td class="J_zhaiyao" style="line-height:30px;" valign='top'>段双明, 张胜利. <a href="https://esst.cip.com.cn/CN/10.19799/j.cnki.2095-4239.2023.0605" target="_blank" class="txt_zhaiyao">基于自适应多层<strong>RLS</strong>的锂离子电池参数辨识</a>[J]. 储能科学与技术, 2024, 13(2): 712-720.</td> </tr> <tr> <td width="30" valign='top' style="line-height:30px;">[13]</td> <td class="J_zhaiyao" style="line-height:30px;" valign='top'>杜文, 王君雷, 徐运飞, 李世龙, 王昆. <a href="https://esst.cip.com.cn/CN/10.19799/j.cnki.2095-4239.2023.0558" target="_blank" class="txt_zhaiyao">火焰喷雾热解法生产锂离子电池高镍三元正极材料的技术经济分析</a>[J]. 储能科学与技术, 2024, 13(1): 345-357.</td> </tr> <tr> <td width="30" valign='top' style="line-height:30px;">[14]</td> <td class="J_zhaiyao" style="line-height:30px;" valign='top'>梁宏毅, 陈锋, 甘友毅, 邵丹. <a href="https://esst.cip.com.cn/CN/10.19799/j.cnki.2095-4239.2023.0608" target="_blank" class="txt_zhaiyao">动力锂电池三元正极低温性能研究</a>[J]. 储能科学与技术, 2024, 13(1): 293-298.</td> </tr> <tr> <td width="30" valign='top' style="line-height:30px;">[15]</td> <td class="J_zhaiyao" style="line-height:30px;" valign='top'>肖也, 徐磊, 闫崇, 黄佳琦. <a href="https://esst.cip.com.cn/CN/10.19799/j.cnki.2095-4239.2023.0638" target="_blank" class="txt_zhaiyao">锂电池用参比电极的设计与应用</a>[J]. 储能科学与技术, 2024, 13(1): 82-91.</td> </tr> </table> </div> </div> </div> <div class="panel panel-default" id="bianjituijian" style="display:none;"> <div class="panel-heading" role="tab" id="tuijianwenzhang" onClick="xianshi(this)"> <h4 class="panel-title"> <a id="recommendedArticles" class="collapsed" href="javascript:;"> 编辑推荐 <span class="badge badge-info" id="recommendedArticlesCount"></span> </a> </h4> </div> <div id="collapseFour" class="panel-collapse collapse" role="tabpanel" aria-labelledby="headingFour" style="display: none;"> <div class="panel-body" id="recommendedArticles-list"> </div> </div> </div> <div class="panel panel-default" > <div class="panel-heading" role="tab" id="Metrics" onClick="xianshi(this)"> <h4 class="panel-title"> <a class="collapsed" href="javascript:;" > Metrics </a> </h4> </div> <div id="collapseFive" class="panel-collapse collapse" role="tabpanel" aria-labelledby="headingFive" style="display: none;"> <div class="panel-body"> <table width="98%" border="0" cellspacing="0" cellpadding="0"> <tr> <td width="24" height="32"></td> <td colspan="2" bgcolor="#E0EEF7"><span class="STYLE1">阅读次数</span></td> </tr> <tr> <td width="24" height="5"></td> <td colspan="2" bgcolor="#FFFFFF"></td> </tr> <tr> <td height="153"></td> <td width="110" valign="top" bgcolor="#EFEFEF" style="line-height:150%"> <strong>全文</strong><br /> <span class="STYLE2"><div id="FullText"></div></span> </td> <td valign="top"> <table width="63%" border="0" cellspacing="0" cellpadding="0"> <tr> <td><div id="HtmlPdfVersion"></div></td> </tr> </table> <br /> <table width="63%" border="0" cellspacing="0" cellpadding="0"> <tr> <td colspan="3"><div id="FromHtmlPdf"></div></td> </tr> </table> <br /> <div id="DownloadDistribution"></div> <div id="DownloadCountryDistribution"></div> </td> </tr> <tr> <td></td> <td colspan="2" height=5></td> </tr> <tr> <td height="158"></td> <td valign="top" bgcolor="#efefef" style="line-height:150%"> <strong>摘要</strong><br> <span class="STYLE2"><div id="AbstractCount"></div></span> </td> <td valign="top"> <table width="40%" height="52" border="0" cellpadding="0" cellspacing="0"> <tr> <td><div id="AbstractVersion"></div></td> </tr> <tr> <td><div id="FromAbstract"></div></td> </tr> </table> <br /> <div id="AbstractDistribution"></div> <div id="AbstractCountryDistribution"></div> </td> </tr> <tr> <td></td> <td colspan="2" height=5></td> </tr> <!-- <tr> <td height="30"></td> <td bgcolor="#E0EEF7"><p><strong>Cited</strong></p></td> <td> <div id="citations"></div> </td> </tr> <tr> <td height="8"></td> <td height="8"></td> <td height="8"></td> </tr> <tr> <td height="31"> </td> <td bgcolor="#E0EEF7"><strong>Shared</strong></td> <td><strong>  <a class="shareCount"></a></strong></td> </tr> --> <tr> <td height="5"></td> <td></td> <td></td> </tr> </table> </div> </div> </div> <div class="panel panel-default" > <div class="panel-heading" role="tab" id="benwenpingjia" onClick="xianshi(this)"> <h4 class="panel-title"> <a id="pingjia" class="collapsed" href="javascript:;" > 本文评价 </a> </h4> </div> <div id="collapseSix" class="panel-collapse collapse" role="tabpanel" aria-labelledby="headingSix" style="display: none;"> <div class="panel-body"> <div id="ArticleEstimate"> <div id="Estimate"></div> <div id="Comment"></div> </div> </div> </div> </div> </div> <!--折叠面板end--> </div> <div class="col-lg-1 col-md-2 hidden-print hidden-xs hidden-sm"> <!--右快速导航--> <div id="plane" class="pinned"> <ul class="plane-bd list-unstyled"> <li style="width:100px;"> <a href="javascript:;" onclick="zhaiyao('#zhaiyao');"> <span>摘要</span> <i class="glyphicon glyphicon-text-color"></i> </a> </li> <li style="width:100px;"> <a href="javascript:;" onclick="zhaiyao('#tubiao');"> <span>图/表</span> <i class="glyphicon glyphicon-picture"></i> </a> </li> <li style="width:100px;"> <a href="javascript:;" onclick="zhaiyao('#cankaowenxian');"> <span>参考文献</span> <i class="glyphicon glyphicon-equalizer"></i> </a> </li> <li style="width:100px;"> <a href="javascript:;" onclick="zhaiyao('#xiangguanwenzhang');"> <span>相关文章</span> <i class="glyphicon glyphicon-list-alt"></i> </a> </li> <li style="width:100px;" id="bianjituijianli" style="display:none;"> <a href="javascript:;" onclick="zhaiyao('#tuijianwenzhang');"> <span>编辑推荐</span> <i class="glyphicon glyphicon-list-alt"></i> </a> </li> <li style="width:100px;"> <a href="javascript:;" onclick="zhaiyao('#Metrics');"> <span>Metrics</span> <i class="glyphicon glyphicon-stats"></i> </a> </li> <li style="width:100px;"> <a href="javascript:;" onclick="zhaiyao('#benwenpingjia');"> <span>本文评价</span> <i class="glyphicon glyphicon-stats"></i> </a> </li> </ul> <div class="plane-ft"> <a href="#goTop" target="_self" title="回顶部" style="color:#ff6600;width:100px;" class="text-center">回顶部</a> </div> </div> <!--右快速导航--> </div> </div> </div> <!--底部--> <div class="container whitebg" style="height: 16px"></div> <div class="container"> <div class="row"> <footer class="text-center footer"> <p> <br> Copyright © 2020 《储能科学与技术》 版权所有 All Rights Reserved.<br> 凡注明本刊独家的版权为《储能科学与技术》所有,欢迎转载但请务必注明来源。如果本文侵犯您的权益,请联系本站删除!<br> 凡注明“来源:XXX(非《储能科学与技术》)”,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。其他媒体如需转载,请与稿件来源方联系,如产生任何问题与本网无关。<br> 地址:北京东城区青年湖南街13号化工出版社3层 电话:86-10-64519601/64519602/64519643 E-mail:esst2012@cip.com.cn; esst_edit@126.com<br> 京公网安备 11010102001997号 <a href="https://beian.miit.gov.cn" style="color:#fff;" target="_blank">京ICP备12046843号-1</a> </p> </footer> </div> </div> <iframe src="https://esst.cip.com.cn/EN/article/updateBrowseNum.jsp?articleid=2525" height=0 scrolling=no border=0 frameborder=0 allowtransparency="true"></iframe> </body> </html> <script type="text/javascript"> var hash = window.location.hash; loadMetricsTabc(); loadArticleEstimate(); $(function() { $('#container').tabs(1); }); $("#MetricsTabC").click(function(){ loadMetricsTabc(); }); $("#ArticleEstimateTab").click(function(){ loadArticleEstimate(); }); function loadArticleEstimate(){ $("#Estimate").empty(); $("#Estimate").append("<iframe src=\"https://esst.cip.com.cn/include/showEstimate.do?articleId=2525\" width=\"1000\" height=\"85\" scrolling=no frameborder=0 allowtransparency=\"true\" style=\"padding: 20\"></iframe>"); $("#Comment").empty(); $("#Comment").append("<iframe src=\"https://esst.cip.com.cn/CN/comment/showCommentList.do?type=article&typeId=2525\" width=\"1000\" style=\"min-height:700px; width:100%;\" scrolling=no frameborder=0 allowtransparency=\"true\" style=\"padding: 20\" id=\"ifr-comment\"></iframe>"); } $(function(){ $('.tabs-nav').children('li').eq(0).addClass('tabs-selected'); $('.tabs-nav').children('li').last().removeClass('tabs-selected'); $('#AbstractTab').removeClass('tabs-hide'); $('#MetricsTab').addClass('tabs-hide'); }) function loadMetricsTabc(){ $("#FullText").load("https://esst.cip.com.cn/CN/matrix/matrix.do?articleId=2525&type=FullText"); $("#HtmlPdfVersion").load("https://esst.cip.com.cn/CN/matrix/matrix.do?articleId=2525&type=HtmlPdfVersion"); $("#FromHtmlPdf").load("https://esst.cip.com.cn/CN/matrix/matrix.do?articleId=2525&type=FromHtmlPdf"); $("#AbstractVersion").load("https://esst.cip.com.cn/CN/matrix/matrix.do?articleId=2525&type=AbstractVersion"); $("#AbstractCount").load("https://esst.cip.com.cn/CN/matrix/matrix.do?articleId=2525&type=AbstractCount"); $("#FromAbstract").load("https://esst.cip.com.cn/CN/matrix/matrix.do?articleId=2525&type=FromAbstract"); //$("#citations").load("https://esst.cip.com.cn/CN/matrix/matrix.do?articleId=2525&type=citations"); $("#DownloadDistribution").empty(); $("#DownloadDistribution").append("<iframe src=\"https://esst.cip.com.cn/CN/matrix/matrix.do?articleId=2525&type=DownloadDistribution\" width=\"600\" height=\"300\" scrolling=no frameborder=0 allowtransparency=\"true\" style=\"padding: 20\"></iframe>"); $("#DownloadCountryDistribution").empty(); $("#DownloadCountryDistribution").append("<iframe src=\"https://esst.cip.com.cn/CN/matrix/matrix.do?articleId=2525&type=DownloadCountryDistribution\" width=\"550\" height=\"300\" scrolling=no frameborder=0 allowtransparency=\"true\"></iframe>"); $("#AbstractDistribution").empty(); $("#AbstractDistribution").append("<iframe src=\"https://esst.cip.com.cn/CN/matrix/matrix.do?articleId=2525&type=AbstractDistribution\" width=\"600\" height=\"300\" scrolling=no frameborder=0 allowtransparency=\"true\" style=\"padding: 20\"></iframe>"); $("#AbstractCountryDistribution").empty(); $("#AbstractCountryDistribution").append("<iframe src=\"https://esst.cip.com.cn/CN/matrix/matrix.do?articleId=2525&type=AbstractCountryDistribution\" width=\"550\" height=\"300\" scrolling=no frameborder=0 allowtransparency=\"true\" style=\"padding: 20\"></iframe>"); } </script> <!--css必引 --> <link rel="stylesheet" href="https://esst.cip.com.cn/images/2095-4239/css/abstract.css">