储能科学与技术 ›› 2024, Vol. 13 ›› Issue (1): 143-156.doi: 10.19799/j.cnki.2095-4239.2023.0713

• 高比能二次电池关键材料与先进表征专刊 • 上一篇    下一篇

高能量密度液流电池关键材料与先进表征

闫苏1,2(), 钟芳芳1(), 刘俊伟2(), 丁美1, 贾传坤1,2   

  1. 1.长沙理工大学能源与动力工程学院,储能研究所,湖南 长沙 410114
    2.张家港德泰储能装备有限公司,江苏 苏州 215627
  • 收稿日期:2023-10-13 修回日期:2023-10-24 出版日期:2024-01-05 发布日期:2024-01-22
  • 通讯作者: 钟芳芳,刘俊伟 E-mail:y18570740913@163.com;ffzh@csust.edu.cn;ljw-email@163.com
  • 作者简介:闫苏(1997—),男,硕士,研究方向为液流电池关键材料制备与表征,E-mail:y18570740913@163.com
  • 基金资助:
    湖南省自然科学基金面上项目(2023JJ30011);湖南省教育厅科技项目(21A0195)

Key materials and advanced characterization of high-energy-density flow battery

Su YAN1,2(), Fangfang ZHONG1(), Junwei LIU2(), Mei DING1, Chuankun JIA1,2   

  1. 1.Institute of Energy Storage Technology, College of Energy and Power Engineering, Changsha University of Science & Technology, Changsha 410114, Hunan, China
    2.Zhangjiagang Detai Energy Storage Equipment Co. , Ltd. , Suzhou 215627, Jiangsu, China
  • Received:2023-10-13 Revised:2023-10-24 Online:2024-01-05 Published:2024-01-22
  • Contact: Fangfang ZHONG, Junwei LIU E-mail:y18570740913@163.com;ffzh@csust.edu.cn;ljw-email@163.com

摘要:

氧化还原液流电池具有安全性能高、可深度充放电、设计灵活等优势,在大规模储能领域得到了广泛关注,是实现“双碳”目标的一种重要储能技术。然而,较低的能量密度限制了液流电池的应用前景,因此亟需开发高能量密度的液流电池体系。液流电池的能量密度取决于电池关键材料的性能,尤其是正、负极电解液中活性物质的溶解性和电解液的电化学活性。因此,液流电池关键材料的开发和性能表征是液流电池领域中的重要研究方向。本文综述了高能量密度液流电池的主要构建策略,着重讨论了多电子转移体系、提高活性物质溶解度、半固态流体电池和氧化还原靶向反应液流电池四种提升电池能量密度的方法,并介绍了当前液流电池领域中的先进原位表征技术,包括原位拉曼光谱、原位紫外-可见吸收光谱、原位红外光谱和原位核磁共振技术。本文总结了高能量密度液流电池关键材料的研究进展,明确了原位表征技术在揭示复杂电化学反应机理中的重要作用,并对高能量密度液流电池的应用场景进行了展望。

关键词: 电化学储能技术, 液流电池, 能量密度, 原位表征

Abstract:

Redox flow batteries have garnered considerable attention in the realm of large-scale energy storage because of their inherent safety, deep charging and discharging capabilities, and flexible design. They have emerged as a crucial energy storage technology to fulfill China's dual carbon goal. However, their applicability is hindered by low-energy-density, prompting an urgent need for the development of high-energy-density flow batteries. The energy density of a redox flow battery is intricately linked to the performance of its key materials, with a particular emphasis on the solubility of both positive and negative active substances, as well as the electrochemical reactivity of the electrolytes. Consequently, the research focus in the field of flow batteries revolves around the development and characterization of these key materials. This review delves into the primary construction strategies employed in high-energy-density flow batteries. This study provides an in-depth examination of four methods aimed at enhancing battery energy density, namely: the multi-electron transfer system, improving the solubility of electrochemically active substances, semi-solid flow batteries, and redox-targeted reaction flow batteries. In addition, the review highlights the current advancements in in-situ characterization techniques within the field of flow batteries. These techniques include in situ Raman spectroscopy, in situ UV-vis absorption spectroscopy, in situ infrared spectroscopy, and in situ nuclear magnetic resonance technology. By introducing these advanced techniques, this review underscores their pivotal role in elucidating complex electrochemical reaction mechanisms. In summarizing the research progress of key materials for high-energy-density flow batteries, the review emphasizes the significance of in situ characterization technology. This study clarifies the crucial role these techniques play in unveiling intricate electrochemical reaction mechanisms. Furthermore, the review offers a prospective analysis of the application scenarios for high-energy-density flow batteries, further solidifying their potential impact in the field of large-scale energy storage.

Key words: electrochemical energy storage technology, flow battery, energy density, in situ characterization

中图分类号: