储能科学与技术 ›› 2024, Vol. 13 ›› Issue (1): 143-156.doi: 10.19799/j.cnki.2095-4239.2023.0713
• 高比能二次电池关键材料与先进表征专刊 • 上一篇 下一篇
闫苏1,2(), 钟芳芳1(), 刘俊伟2(), 丁美1, 贾传坤1,2
收稿日期:
2023-10-13
修回日期:
2023-10-24
出版日期:
2024-01-05
发布日期:
2024-01-22
通讯作者:
钟芳芳,刘俊伟
E-mail:y18570740913@163.com;ffzh@csust.edu.cn;ljw-email@163.com
作者简介:
闫苏(1997—),男,硕士,研究方向为液流电池关键材料制备与表征,E-mail:y18570740913@163.com;
基金资助:
Su YAN1,2(), Fangfang ZHONG1(), Junwei LIU2(), Mei DING1, Chuankun JIA1,2
Received:
2023-10-13
Revised:
2023-10-24
Online:
2024-01-05
Published:
2024-01-22
Contact:
Fangfang ZHONG, Junwei LIU
E-mail:y18570740913@163.com;ffzh@csust.edu.cn;ljw-email@163.com
摘要:
氧化还原液流电池具有安全性能高、可深度充放电、设计灵活等优势,在大规模储能领域得到了广泛关注,是实现“双碳”目标的一种重要储能技术。然而,较低的能量密度限制了液流电池的应用前景,因此亟需开发高能量密度的液流电池体系。液流电池的能量密度取决于电池关键材料的性能,尤其是正、负极电解液中活性物质的溶解性和电解液的电化学活性。因此,液流电池关键材料的开发和性能表征是液流电池领域中的重要研究方向。本文综述了高能量密度液流电池的主要构建策略,着重讨论了多电子转移体系、提高活性物质溶解度、半固态流体电池和氧化还原靶向反应液流电池四种提升电池能量密度的方法,并介绍了当前液流电池领域中的先进原位表征技术,包括原位拉曼光谱、原位紫外-可见吸收光谱、原位红外光谱和原位核磁共振技术。本文总结了高能量密度液流电池关键材料的研究进展,明确了原位表征技术在揭示复杂电化学反应机理中的重要作用,并对高能量密度液流电池的应用场景进行了展望。
中图分类号:
闫苏, 钟芳芳, 刘俊伟, 丁美, 贾传坤. 高能量密度液流电池关键材料与先进表征[J]. 储能科学与技术, 2024, 13(1): 143-156.
Su YAN, Fangfang ZHONG, Junwei LIU, Mei DING, Chuankun JIA. Key materials and advanced characterization of high-energy-density flow battery[J]. Energy Storage Science and Technology, 2024, 13(1): 143-156.
1 | CHU S, CUI Y, LIU N. The path towards sustainable energy[J]. Nature Materials, 2017, 16(1): 16-22. |
2 | AGER J W, LAPKIN A A. Chemical storage of renewable energy[J]. Science, 2018, 360(6390): 707-708. |
3 | ZANTYE M S, ARORA A, FARUQUE HASAN M M. Renewable-integrated flexible carbon capture: A synergistic path forward to clean energy future[J]. Energy & Environmental Science, 2021, 14(7): 3986-4008. |
4 | GÜR T M. Review of electrical energy storage technologies, materials and systems: Challenges and prospects for large-scale grid storage[J]. Energy & Environmental Science, 2018, 11(10): 2696-2767. |
5 | DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935. |
6 | YANG Z G, ZHANG J L, KINTNER-MEYER M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613. |
7 | 陈海生, 刘畅, 徐玉杰, 等. 储能在碳达峰碳中和目标下的战略地位和作用[J]. 储能科学与技术, 2021, 10(5): 1477-1485. |
CHEN H S, LIU C, XU Y J, et al. The strategic position and role of energy storage under the goal of carbon peak and carbon neutrality[J]. Energy Storage Science and Technology, 2021, 10(5): 1477-1485. | |
8 | ZHU Z X, JIANG T L, ALI M, et al. Rechargeable batteries for grid scale energy storage[J]. Chemical Reviews, 2022, 122(22): 16610-16751. |
9 | ZANTYE M S, GANDHI A, WANG Y F, et al. Optimal design and integration of decentralized electrochemical energy storage with renewables and fossil plants[J]. Energy & Environmental Science, 2022, 15(10): 4119-4136. |
10 | KEBEDE A A, KALOGIANNIS T, VAN MIERLO J, et al. A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration[J]. Renewable and Sustainable Energy Reviews, 2022, 159: 112213. |
11 | CHO J, JEONG S, KIM Y. Commercial and research battery technologies for electrical energy storage applications[J]. Progress in Energy and Combustion Science, 2015, 48: 84-101. |
12 | 贾传坤, 王庆. 高能量密度液流电池的研究进展[J]. 储能科学与技术, 2015, 4(5): 467-475. |
JIA C K, WANG Q. The development of high energy density redox flow batteries[J]. Energy Storage Science and Technology, 2015, 4(5): 467-475. | |
13 | 袁治章, 刘宗浩, 李先锋. 液流电池储能技术研究进展[J]. 储能科学与技术, 2022, 11(9): 2944-2958. |
YUAN Z Z, LIU Z H, LI X F. Research progress of flow battery technologies[J]. Energy Storage Science and Technology, 2022, 11(9): 2944-2958. | |
14 | ZHANG L Y, FENG R Z, WANG W, et al. Emerging chemistries and molecular designs for flow batteries[J]. Nature Reviews Chemistry, 2022, 6(8): 524-543. |
15 | 缪平, 姚祯, LEMMON John, 等. 电池储能技术研究进展及展望[J]. 储能科学与技术, 2020, 9(3): 670-678. |
MIAO P, YAO Z, JOHN L, et al. Current situations and prospects of energy storage batteries[J]. Energy Storage Science and Technology, 2020, 9(3): 670-678. | |
16 | 郑琼, 江丽霞, 徐玉杰, 等. 碳达峰、碳中和背景下储能技术研究进展与发展建议[J]. 中国科学院院刊, 2022, 37(4): 529-540. |
ZHENG Q, JIANG L X, XU Y J, et al. Research progress and development suggestions of energy storage technology under background of carbon peak and carbon neutrality[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(4): 529-540. | |
17 | XIA L, LONG T, LI W Y, et al. Highly stable vanadium redox-flow battery assisted by redox-mediated catalysis[J]. Small, 2020, 16(38): 2003321-2003330. |
18 | LONG T, LONG Y, DING M, et al. Large scale preparation of 20 cm×20 cm graphene modified carbon felt for high performance vanadium redox flow battery[J]. Nano Research, 2021, 14(10): 3538-3544. |
19 | JIAO M L, LIU T, CHEN C J, et al. Holey three-dimensional wood-based electrode for vanadium flow batteries[J]. Energy Storage Materials, 2020, 27: 327-332. |
20 | YE J Y, ZHAO X L, MA Y L, et al. Hybrid membranes dispersed with superhydrophilic TiO2 nanotubes toward ultra-stable and high-performance vanadium redox flow batteries[J]. Advanced Energy Materials, 2020, 10(22): 1904041-1904047. |
21 | ULAGANATHAN M, ARAVINDAN V, YAN Q Y, et al. Recent advancements in all-vanadium redox flow batteries[J]. Advanced Materials Interfaces, 2016, 3(1): 1500309-1500330. |
22 | THALLER L H. Electrically rechargeable REDOX flow cell: US3996064[P]. 1976-12-07. |
23 | XIE C Y, YAN H, SONG Y F, et al. Catalyzing anode Cr2+/Cr3+ redox chemistry with bimetallic electrocatalyst for high-performance iron-chromium flow batteries[J]. Journal of Power Sources, 2023, 564: 232860. |
24 | WANG S L, XU Z Y, WU X L, et al. Analyses and optimization of electrolyte concentration on the electrochemical performance of iron-chromium flow battery[J]. Applied Energy, 2020, 271: 115252. |
25 | SKYLLAS-KAZACOS M, RYCHCIK M, ROBINS R G, et al. New all-vanadium redox flow cell[J]. Journal of the Electrochemical Society, 1986, 133(5): 1057-1058. |
26 | WANG G X, ZOU H T, ZHU X B, et al. Recent progress in zinc-based redox flow batteries: A review[J]. Journal of Physics D: Applied Physics, 2022, 55(16): 163001. |
27 | WEI X L, XIA G G, KIRBY B, et al. An aqueous redox flow battery based on neutral alkali metal ferri/ferrocyanide and polysulfide electrolytes[J]. Journal of the Electrochemical Society, 2015, 163(1): A5150-A5153. |
28 | XU Z C, FAN Q, LI Y, et al. Review of zinc dendrite formation in zinc bromine redox flow battery[J]. Renewable and Sustainable Energy Reviews, 2020, 127: 109838. |
29 | DING M, FU H, LOU X C, et al. A stable and energy-dense polysulfide/permanganate flow battery[J]. ACS Nano, 2023, 17(16): 16252-16263. |
30 | CHENG J, ZHANG L, YANG Y S, et al. Preliminary study of single flow zinc-nickel battery[J]. Electrochemistry Communications, 2007, 9(11): 2639-2642. |
31 | JIN S, SHAO Y Q, GAO X S, et al. Designing interphases for practical aqueous zinc flow batteries with high power density and high areal capacity[J]. Science Advances, 2022, 8(39): eabq4456. |
32 | LIN D, RAO D W, CHIOVOLONI S, et al. Prototypical study of double-layered cathodes for aqueous rechargeable static Zn-I2 batteries[J]. Nano Letters, 2021, 21(9): 4129-4135. |
33 | YANG J, SONG Y X, LIU Q H, et al. High-capacity zinc-iodine flow batteries enabled by a polymer-polyiodide complex cathode[J]. Journal of Materials Chemistry A, 2021, 9(29): 16093-16098. |
34 | XIE C X, LI T Y, DENG C Z, et al. A highly reversible neutral zinc/manganese battery for stationary energy storage[J]. Energy & Environmental Science, 2020, 13(1): 135-143. |
35 | ULAGANATHAN M, SURESH S, MARIYAPPAN K, et al. New zinc-vanadium (Zn-V) hybrid redox flow battery: High-voltage and energy-efficient advanced energy storage system[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 6053-6060. |
36 | ZHI L P, LI T Y, LIU X Q, et al. Functional complexed zincate ions enable dendrite-free long cycle alkaline zinc-based flow batteries[J]. Nano Energy, 2022, 102: 107697. |
37 | LU W J, LI T Y, YUAN C G, et al. Advanced porous composite membrane with ability to regulate zinc deposition enables dendrite-free and high-areal capacity zinc-based flow battery[J]. Energy Storage Materials, 2022, 47: 415-423. |
38 | HUSKINSON B, MARSHAK M P, SUH C, et al. A metal-free organic-inorganic aqueous flow battery[J]. Nature, 2014, 505(7482): 195-198. |
39 | DEBRULER C, HU B, MOSS J, et al. Designer two-electron storage viologen anolyte materials for neutral aqueous organic redox flow batteries[J]. Chem, 2017, 3(6): 961-978. |
40 | HOLLAS A, WEI X L, MURUGESAN V, et al. A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries[J]. Nature Energy, 2018, 3(6): 508-514. |
41 | ZHANG C K, NIU Z H, PENG S S, et al. Redox flow batteries: Phenothiazine-based organic catholyte for high-capacity and long-life aqueous redox flow batteries[J]. Advanced Materials, 2019, 31(24): 1970175. |
42 | LIU T B, WEI X L, NIE Z M, et al. A total organic aqueous redox flow battery employing a low cost and sustainable methyl viologen anolyte and 4-HO-TEMPO catholyte[J]. Advanced Energy Materials, 2016, 6(3): 1501449. |
43 | LI Z J, WENG G M, ZOU Q L, et al. A high-energy and low-cost polysulfide/iodide redox flow battery[J]. Nano Energy, 2016, 30: 283-292. |
44 | 钟芳芳, 颜云皓, 龚晶, 等. 水系有机液流电池中分子体系研究进展[J]. 长沙理工大学学报(自然科学版), 2023, 20(3): 52-68. |
ZHONG F F, YAN Y H, GONG J, et al. Advances of redox-active molecules in aqueous organic redox flow batteries[J]. Journal of Changsha University of Science & Technology (Natural Science), 2023, 20(3): 52-68. | |
45 | FENG R Z, ZHANG X, WANG W, et al. Reversible ketone hydrogenation and dehy-drogenation for aqueous organic redox flow batteries[J]. Science, 2021, 372(6544): 836-840. |
46 | LOU X C, FU H, XU J, et al. Cost-effective membrane and advanced electrode for stable polysulfide-ferricyanide flow battery[J]. Energy Material Advances, 2022, 9865618. |
47 | YUAN Z Z, LIANG L X, DAI Q, et al. Low-cost hydrocarbon membrane enables commercial-scale flow batteries for long-duration energy storage[J]. Joule, 2022, 6(4): 884-905. |
48 | CHU F M, SU M H, XIAO G Z, et al. Analysis of electrode configuration effects on mass transfer and organic redox flow battery performance[J]. Industrial & Engineering Chemistry Research, 2022, 61(7): 2915-2925. |
49 | JIANG Y Q, CHENG G, LI Y H, et al. Promoting vanadium redox flow battery performance by ultra-uniform ZrO2@C from metal-organic framework[J]. Chemical Engineering Journal, 2021, 415: 129014. |
50 | CHEN B X, HUANG H A, LIN J D, et al. Doping engineering of M-N-C electrocatalyst based membrane-electrode assembly for high-performance aqueous polysulfides redox flow batteries[J]. Advanced Science, 2023, 10(16): 2206949. |
51 | XU Y E, XIE C X, LI T Y, et al. A high energy density bromine-based flow battery with two-electron transfer[J]. ACS Energy Letters, 2022, 7(3): 1034-1039. |
52 | ZOU Y P, LIU T T, DU Q J, et al. A four-electron Zn-I2 aqueous battery enabled by reversible I-/I2/I+ conversion[J]. Nature Communications, 2021, 12: 170. |
53 | GE G X, ZHANG C K, LI X F. Multi-electron transfer electrode materials for high-energy-density flow batteries[J]. Next Energy, 2023, 1(3): 100043. |
54 | HUANG J H, HU S Z, LIANG Z X, et al. Radical stabilization of a tripyridinium-triazine molecule enables reversible storage of multiple electrons[J]. Angewandte Chemie International Edition, 2021, 60(38): 20921-20925. |
55 | TANG G G, LIU Y H, LI Y Y, et al. Designing robust two-electron storage extended bipyridinium anolytes for pH-neutral aqueous organic redox flow batteries[J]. JACS Au, 2022, 2(5): 1214-1222. |
56 | HU S Z, LI T Y, HUANG M B, et al. Phenylene-bridged bispyridinium with high capacity and stability for aqueous flow batteries[J]. Advanced Materials, 2021, 33(7): 2005839. |
57 | ZHANG X R, LIU X, ZHANG H, et al. Robust chalcogenophene viologens as anolytes for long-life aqueous organic redox flow batteries with high battery voltage[J]. ACS Applied Materials & Interfaces, 2022, 14(43): 48727-48733. |
58 | ZHEN Y H, ZHANG C J, YUAN J S, et al. Anthraquinone-based electroactive ionic species as stable multi-redox anode active materials for high-performance nonaqueous redox flow batteries[J]. Journal of Materials Chemistry A, 2021, 9(38): 22056-22063. |
59 | REMICK R J, ANG P G P. Electrically rechargeable anionically active reduction-oxidation electrical storage-supply system: US4485154[P]. 1984-11-27. |
60 | LI B, NIE Z M, VIJAYAKUMAR M, et al. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery[J]. Nature Communications, 2015, 6: 6303. |
61 | XIE C X, LIU Y, LU W J, et al. Highly stable zinc-iodine single flow batteries with super high energy density for stationary energy storage[J]. Energy & Environmental Science, 2019, 12(6): 1834-1839. |
62 | LONG Y, XU Z Z, WANG G X, et al. A neutral polysulfide/ferricyanide redox flow battery[J]. iScience, 2021, 24(10): 103157. |
63 | WANG G X, ZOU H T, XU Z Z, et al. Unlocking the solubility limit of ferrocyanide for high energy density redox flow batteries[J]. Materials Today Energy, 2022, 28: 101061. |
64 | LU B, YANG M H, DING M, et al. Catholyte engineering to release the capacity of iodide for high-energy-density iodine-based redox flow batteries[J]. SusMat, 2023, 3(4): 522-532. |
65 | ZU X H, ZHANG L Y, QIAN Y M, et al. Molecular engineering of azobenzene-based anolytes towards high-capacity aqueous redox flow batteries[J]. Angewandte Chemie International Edition, 2020, 59(49): 22163-22170. |
66 | HU B, LUO J, HU M W, et al. A pH-neutral, metal-free aqueous organic redox flow battery employing an ammonium anthraquinone anolyte[J]. Angewandte Chemie, 2019, 131(46): 16782-16789. |
67 | WANG C X, YU B, LIU Y Z, et al. N-alkyl-carboxylate-functionalized anthraquinone for long-cycling aqueous redox flow batteries[J]. Energy Storage Materials, 2021, 36: 417-426. |
68 | WU W D, WANG A P, LUO J A, et al. A highly stable, capacity dense carboxylate viologen anolyte towards long-duration energy storage[J]. Angewandte Chemie International Edition, 2023, 62(7): e202216662. |
69 | WANG C X, LI X A, YU B, et al. Molecular design of fused-ring phenazine derivatives for long-cycling alkaline redox flow batteries[J]. ACS Energy Letters, 2020, 5(2): 411-417. |
70 | PAN M G, LU Y, LU S Y, et al. The dual role of bridging phenylene in an extended bipyridine system for high-voltage and stable two-electron storage in redox flow batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(37): 44174-44183. |
71 | DUDUTA M, HO B, WOOD V C, et al. Semi-solid lithium rechargeable flow battery[J]. Advanced Energy Materials, 2011, 1(4): 511-516. |
72 | CHEN H N, LU Y C. A high-energy-density multiple redox semi-solid-liquid flow battery[J]. Advanced Energy Materials, 2016, 6(8): 1502183. |
73 | YANG Z F, ZHANG Q, LI W B, et al. A semi-solid zinc powder-based slurry anode for advanced aqueous zinc-ion batteries[J]. Angewandte Chemie International Edition, 2023, 62(3): e202215306. |
74 | WANG Q, ZAKEERUDDIN S M, WANG D Y, et al. Redox targeting of insulating electrode materials: A new approach to high-energy-density batteries[J]. Angewandte Chemie International Edition, 2006, 45(48): 8197-8200. |
75 | HUANG Q Z, LI H, GRÄTZEL M, et al. Reversible chemical delithiation/lithiation of LiFePO4: Towards a redox flow lithium-ion battery[J]. Physical Chemistry Chemical Physics, 2013, 15(6): 1793-1797. |
76 | JIA C K, PAN F, ZHU Y G, et al. High-energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane[J]. Science Advances, 2015, 1(10): e1500886. |
77 | CHENG Y H, WANG X, HUANG S P, et al. Redox targeting-based vanadium redox-flow battery[J]. ACS Energy Letters, 2019, 4(12): 3028-3035. |
78 | CHEN Y, ZHOU M Y, XIA Y H, et al. A stable and high-capacity redox targeting-based electrolyte for aqueous flow batteries[J]. Joule, 2019, 3(9): 2255-2267. |
79 | YAN S, HUANG S P, XU H, et al. Redox targeting-based neutral aqueous flow battery with high energy density and low cost[J]. ChemSusChem, 2023, 16(19): e202300710. |
80 | ZHOU M Y, CHEN Y, SALLA M, et al. Single-molecule redox-targeting reactions for a pH-neutral aqueous organic redox flow battery[J]. Angewandte Chemie International Edition, 2020, 59(34): 14286-14291. |
81 | PÁEZ T, ZHANG F F, MUÑOZ M Á, et al. The redox-mediated nickel-metal hydride flow battery[J]. Advanced Energy Materials, 2022, 12(1): 2102866. |
82 | MIELE E, DOSE W M, MANYAKIN I, et al. Hollow-core optical fibre sensors for operando Raman spectroscopy investigation of Li-ion battery liquid electrolytes[J]. Nature Communications, 2022, 13: 1651. |
83 | LI J W, LUO N J, KANG L Q, et al. Hydrogen-bond reinforced superstructural manganese oxide As the cathode for ultra-stable aqueous zinc ion batteries[J]. Advanced Energy Materials, 2022, 12(44): 2201840. |
84 | YANG L, HAO Y H, LIN J D, et al. POM anolyte for all-anion redox flow batteries with high capacity retention and coulombic efficiency at mild pH[J]. Advanced Materials, 2022, 34(7): e2107425. |
85 | YANG Y Q, LIANG S Q, LU B G, et al. Eutectic electrolyte based on N-methylacetamide for highly reversible zinc-iodine battery[J]. Energy & Environmental Science, 2022, 15(3): 1192-1200. |
86 | SHAN J J, LI M W, ALLARD L F, et al. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts[J]. Nature, 2017, 551(7682): 605-608. |
87 | LI Z J, LU Y C. Polysulfide-based redox flow batteries with long life and low levelized cost enabled by charge-reinforced ion-selective membranes[J]. Nature Energy, 2021, 6(5): 517-528. |
88 | WANG X, LASHGARI A, CHAI J C, et al. A membrane-free, aqueous/nonaqueous hybrid redox flow battery[J]. Energy Storage Materials, 2022, 45: 1100-1108. |
89 | ZHAO E W, LIU T, JÓNSSON E, et al. In situ NMR metrology reveals reaction mechanisms in redox flow batteries[J]. Nature, 2020, 579(7798): 224-228. |
90 | JING Y, ZHAO E W, GOULET M A, et al. In situ electrochemical recomposition of decomposed redox-active species in aqueous organic flow batteries[J]. Nature Chemistry, 2022, 14(10): 1103-1109. |
91 | 苗建军. 面向新能源的全钒液流电池储能电站优化设计[J]. 分布式能源, 2023, 8(2): 44-51. |
MIAO J J. Optimal design of vanadium redox flow battery energy storage station for new energy[J]. Distributed Energy, 2023, 8(2): 44-51. | |
92 | 杜念慈. 兆瓦级液流电池储能系统的均衡技术研究[J]. 科技资讯, 2023, 21(17): 73-78, 199. |
DU N C. Research on the balancing technology of the megawatt-level flow battery energy storage system[J]. Science & Technology Information, 2023, 21(17): 73-78, 199. | |
93 | 廖涛, 张建飞, 赵志磊, 等. 独立储能电站经济效益方案分析[J]. 现代工业经济和信息化, 2023, 13(7): 214-216. |
LIAO T, ZHANG J F, ZHAO Z L, et al. Analysis on economic benefit scheme of independent energy storage power statio[J]. Modern Industrial Economy and Informationization, 2023, 13(7): 214-216. | |
94 | 杜预则, 董海鹰. 基于主从博弈的储能电站协同源荷消纳新能源调控策略[J/OL]. 综合智慧能源:1-9[2023-9-20]. http://kns.cnki.net/kcms/detail/41.1461.tk.20230511.0909.004.html. |
Du Y Z, Dong H Y. Research on the source-load-storage collaborative scheduling strategy for new energy accommodation based on Stackelberg game[J/OL]. Integrated Intelligent Energy:1-9[2023-9-20].http://kns.cnki.net/kcms/detail/41.1461.tk.20230511. 0909.004.html. |
[1] | 徐冉, 王宝冬, 王绍亮, 张琦, 张磊, 冯子洋. 杂原子掺杂电极用于全钒液流电池中的研究进展[J]. 储能科学与技术, 2024, 13(6): 1849-1860. |
[2] | 杨建航, 冯文婷, 韩俊伟, 魏欣茹, 马晨宇, 毛常明, 智林杰, 孔德斌. 锂/钠-氯二次电池的最新进展——从材料构建到性能评估[J]. 储能科学与技术, 2024, 13(6): 1824-1834. |
[3] | 姜媛媛, 屠芳芳, 张芳平, 王盈来, 蔡佳文, 杨东辉, 李艳红, 相佳媛, 夏新辉, 傅继澎. 高性能磷酸铁锂电池补锂技术及机制[J]. 储能科学与技术, 2024, 13(5): 1435-1442. |
[4] | 戴纹硕, 郭骞远, 陈向南, 张华民, 马相坤. 全钒液流电池双极板材料研究进展[J]. 储能科学与技术, 2024, 13(4): 1310-1325. |
[5] | 张晓平, 容远嘉, 王潜雁, 高梦林, 廖亚玲, 吴民生, 庄鑫鑫, 黄中昱, 万美君, 陈维荣. 原位表征技术在锂氧气电池中的研究进展[J]. 储能科学与技术, 2024, 13(4): 1225-1238. |
[6] | 许旭鹏, 许旭明, 陈虹艳, 梁雅儒, 雷维新, 马增胜, 陈国新, 柯培玲. 原位表征技术在锂硫电池机理研究中的应用[J]. 储能科学与技术, 2024, 13(4): 1239-1252. |
[7] | 张爱芳, 魏邦达, 李卓昊, 杨洋, 杨添强, 姚俊, 张杰, 刘飞, 李浩秒, 王康丽, 蒋凯. 全钒液流电池建模及SOC在线估计研究进展[J]. 储能科学与技术, 2024, 13(3): 1036-1049. |
[8] | 李昂, 李晓蒙, 李京浩, 张谨奕. 液流电池堆分析与计算程序[J]. 储能科学与技术, 2024, 13(3): 879-892. |
[9] | 孙晓云, 王德仁, 孟琳, 任忠山, 李森森. 基于高面容量锌溴液流电池的电堆结构及负极材料设计与优化[J]. 储能科学与技术, 2024, 13(2): 370-380. |
[10] | 周洋, 韩培玉, 牛迎春, 徐春明, 徐泉. 金属有机框架衍生的C-Bi/CC电极制备及其在铁铬液流电池中的电化学性能[J]. 储能科学与技术, 2024, 13(2): 381-389. |
[11] | 贾铭勋, 吴桐, 杨道通, 秦小茜, 刘景海, 段莉梅. 锂硫电池电解液多功能添加剂:作用机制及先进表征[J]. 储能科学与技术, 2024, 13(1): 36-47. |
[12] | 李召阳, 刘定宏, 赵岩岩, 陈满, 雷旗开, 彭鹏, 刘磊. 高比能量锂离子软包电池针刺测试的影响因素研究[J]. 储能科学与技术, 2024, 13(1): 57-71. |
[13] | 张永辉, 傅杰, 李先锋, 张长昆. 原位表征技术在水系有机液流电池中的研究进展[J]. 储能科学与技术, 2023, 12(9): 2971-2984. |
[14] | 李淼, 于永利, 吴剑扬, 雷敏, 周恒辉. 高能量密度磷酸铁锂正极设计[J]. 储能科学与技术, 2023, 12(7): 2045-2058. |
[15] | 郝奕帆, 祝夏雨, 王静, 邱景义, 明海, 方振华. 电池无损检测监测方法分析[J]. 储能科学与技术, 2023, 12(5): 1713-1737. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||