1 |
陈海生, 于振华, 刘为, 等. 储能产业研究白皮书2023[R]. 北京: 中关村储能产业技术联盟, 2023.
|
2 |
杨继云. 全钒液流电池建模与控制系统设计[D]. 南宁: 广西大学, 2012.
|
|
YANG J Y. Modeling of vanadium redox flow battery and design of control system[D]. Nanning: Guangxi University, 2012.
|
3 |
余姝媛, 叶强. 基于高效紧凑设计的液流电池管路优化方法[J]. 电源技术, 2018, 42(11): 1694-1697.
|
|
YU S Y, YE Q. A pipeline optimization method for flow battery systems based on efficient and compact design[J]. Chinese Journal of Power Sources, 2018, 42(11): 1694-1697.
|
4 |
廖斯达, 宋士强, 张剑波, 等. 液流电池理论与技术——全钒液流电池的数值模拟分析[J]. 储能科学与技术, 2014, 3(4): 395-405.
|
|
LIAO S D, SONG S Q, ZHANG J B, et al. Simulation of the effects of electrode parameters on all-vanadium redox flow battery performance[J]. Energy Storage Science and Technology, 2014, 3(4): 395-405.
|
5 |
YE Q, HU J, CHENG P, et al. Design trade-offs among shunt current, pumping loss and compactness in the piping system of a multi-stack vanadium flow battery[J]. Journal of Power Sources, 2015, 296: 352-364.
|
6 |
沈海峰, 朱新坚, 曹弘飞, 等. 全钒液流电池动态建模[J]. 储能科学与技术, 2018, 7(1): 135-140.
|
|
SHEN H F, ZHU X J, CAO H F, et al. Dynamic modeling of all-vanadium flow battery[J]. Energy Storage Science and Technology, 2018, 7(1): 135-140.
|
7 |
BARTON J L, BRUSHETT F R. A one-dimensional stack model for redox flow battery analysis and operation[J]. Batteries, 2019, 5(1): 25.
|
8 |
胡静, 叶强. 多堆串联液流电池系统中电池数目的优化分配[J]. 电源技术, 2016, 40(12): 2419-2421, 2427.
|
|
HU J, YE Q. Optimal cell number allocation in multi-stack redox flow battery system[J]. Chinese Journal of Power Sources, 2016, 40(12): 2419-2421, 2427.
|
9 |
CHEN Y S, HO S Y, CHOU H W, et al. Modeling the effect of shunt current on the charge transfer efficiency of an all-vanadium redox flow battery[J]. Journal of Power Sources, 2018, 390: 168-175.
|
10 |
李蓓, 郭剑波, 陈继忠, 等. 液流储能电池系统支路电流的建模与仿真分析[J]. 中国电机工程学报, 2011, 31(27): 1-7.
|
|
LI B, GUO J B, CHEN J Z, et al. Modelling and simulating of shunt current in redox flow battery[J]. Proceedings of the CSEE, 2011, 31(27): 1-7.
|
11 |
FRANK M W. Fluid Mechanics[M]. McGraw-Hill, 2015: 325-367.
|
12 |
SHAH R K, LONDON A L. Laminar flow forced convection in ducts: a source book for compact heat exchanger analytical data[M]. New York: Academic Press, 1978
|
13 |
Neutrium. Native Dynamics[EB/OL]. [2022-02-05]. https://neutrium.net/fluid-flow/pressure-loss-from-fittings-3k-method/.
|
14 |
熊静. 钒电池机械失效以及力学对电化学作用机制数值分析[D]. 合肥: 中国科学技术大学, 2020.
|
|
XIONG J. Numerical analysis of mechanical failure and mechanism of mechanical effect on electrochemistry of vanadium battery[D]. Hefei: University of Science and Technology of China, 2020.
|
15 |
WEI Z B, ZHAO J Y, SKYLLAS-KAZACOS M, et al. Dynamic thermal-hydraulic modeling and stack flow pattern analysis for all-vanadium redox flow battery[J]. Journal of Power Sources, 2014, 260: 89-99.
|
16 |
MICHAEL J M, HOWARD N S, BRUCE R M, et al. Introduction to thermal systems engineering:Thermodynamics, fluid mechanics and heat transfer[M]. New York:John Wiley & Sons, Inc., 2003: 342-356, 438-446.
|
17 |
MICHAEL J M, HOWARD N S, BRUCE R M, et al. Introduction to thermal systems engineering:Thermodynamics, fluid mechanics and heat transfer[M]. New York: John Wiley & Sons, Inc., 2003: 409-446.
|
18 |
ALAN S T. Tables of thermodynamic and transport properties of fluids[M]. Christchurch: University of Canterbury, 2012: 43.
|
19 |
李昂, 李晓蒙, 杨林, 等. 液流电池封装压力计算[J]. 储能科学与技术, 2022, 11(2): 609-614.
|
|
LI A, LI X M, YANG L, et al. Compression force calculation of redox flow battery[J]. Energy Storage Science and Technology, 2022, 11(2): 609-614.
|
20 |
秦大同, 谢里阳. 现代机械设计手册-第1卷[M]. 北京: 化学工业出版社, 2011: 180.
|
|
QIN D T, XIE L Y. Modern handbook of mechanical design[M]. Beijing: Chemical Industry Press, 2011: 180.
|