储能科学与技术 ›› 2023, Vol. 12 ›› Issue (5): 1713-1737.doi: 10.19799/j.cnki.2095-4239.2023.0081
郝奕帆1(), 祝夏雨2, 王静1, 邱景义2, 明海2(), 方振华3
收稿日期:
2023-02-17
修回日期:
2023-03-15
出版日期:
2023-05-05
发布日期:
2023-05-29
通讯作者:
明海
E-mail:hao.yf@stumail.ysu.edu.cn;hai.mingenergy@hotmail.com
作者简介:
郝奕帆(1999—),女,硕士研究生,主要从事电池检测与评估。E-mail:hao.yf@stumail.ysu.edu.cn;
Yifan HAO1(), Xiayu ZHU2, Jing WANG1, Jingyi QIU2, Hai MING2(), Zhenhua FANG3
Received:
2023-02-17
Revised:
2023-03-15
Online:
2023-05-05
Published:
2023-05-29
Contact:
Hai MING
E-mail:hao.yf@stumail.ysu.edu.cn;hai.mingenergy@hotmail.com
摘要:
电池作为可以实现能源时空调节的器件,是优化能源应用、提高能源综合使用效率的最佳方法之一。随着储能需求的增加及大规模储能系统的广泛应用,高能量密度、长循环寿命的电池成为当前研究的重点。然而,随着电池性能的提升,其安全性问题也日益凸显,电池安全事故往往与电池的有机电解液体系易燃易爆属性、大电流充放电而诱发的热蓄积、电池单体结构以及模组的热电环控技术紧密关联。无损的表征手段可最大限度避免外界干扰,在真实的环境和使用工况下对电池实施原位检测分析,从而更清晰准确地表达和监测电池使役行为,获得电池的反应瞬态和健康状态等关键信息,精准分析电池热失控、寿命衰减等性能衍变规律和反应原理,进一步指导电极材料的制备、电池结构的设计及模组控制,提升电池的安全性和可靠性。本综述对近些年报道的电池无损检测监测表征方法进行了梳理,包括传感器、磁共振、X射线、中子散射、超声波检测、拉曼散射技术等,分别阐述了其原理、应用方式及获取信息的特征,并对各表征技术进行了综合比较,尤其是电池数据的互为支撑关系,为深入探究电池在不同工况下的内部微结构演变与电性能、安全性等的关系提供方法和技术手段,提高电池使用效能,为电池事故预警和寿命预警机制的建立提供支撑。
中图分类号:
郝奕帆, 祝夏雨, 王静, 邱景义, 明海, 方振华. 电池无损检测监测方法分析[J]. 储能科学与技术, 2023, 12(5): 1713-1737.
Yifan HAO, Xiayu ZHU, Jing WANG, Jingyi QIU, Hai MING, Zhenhua FANG. Analysis of battery nondestructive testing and monitoring methods[J]. Energy Storage Science and Technology, 2023, 12(5): 1713-1737.
图10
(a) 测量装置示意图,将薄膜软包电池放置在核磁共振设备的线圈中,连接到电池循环器; (b) 薄膜软包电池的结构图; (c)~(f) 在0.5 mA/cm2 电流密度下,薄膜软包电池电极在不同电解质中(1-PF6-C、1-TFSI-C:分别将1 mol/L的六氟磷酸锂,1 mol/L的双三氟甲磺酰亚胺锂溶于质量比为3∶7的碳酸乙烯酯和碳酸二乙酯中;1-TFSI-E、3-TFSI-E:分别将1 mol/L和3 mol/L的双三氟甲磺酰亚胺锂溶于质量比为1∶1的乙二醇二甲醚和二氧戊环中)经过1 h和8 h电沉积后的 7Li-NMR光谱图像以及1 h后(c1~f1)和8 h电沉积后(c2~f2)的SEM图像[59](PhysChemChemPhys 拥有图片版权)"
表1
关于电池无损检测监测方法对比分析的概述"
电池无损检测监测方法 | 适用研究场景及特点 | 面临的挑战 | |
---|---|---|---|
传感器 技术 | 电压传感器、温度传感器、气体传感器、光纤传感器 | 传感器以嵌入方式植入单体电池内部,实时监测电压、温度、释放的气体和应变等参数 | 单体电池异常情况对于大电池组变化细微,难以有效警示;在电池内部恶劣环境下,传感器监测精度和寿命受到一定影响 |
磁共振 技术 | 核磁共振技术(NMR)、电子顺磁共振技术(EPR) | 可以对金属进行定性和(半)定量检测;监测电极、电解质分解及其界面上原子核周围的局部电子环境等 | 低分辨率;仅根据NMR光谱化学位移对锂沉积物微观结构性质定性分析不充分 |
X射线 技术 | X射线吸收光谱(XAS)、X射线计算机断层扫描技术(CT) | 定性定量地分析电极组件材料元素组成、电子态以及微观结构、界面相互作用等 | 时间分辨率低;对轻元素(锂、氧、钠)不敏感 |
中子散射技术 | 穿透力强,可从原子尺度研究材料物质结构和动态特性;对锂、钠、氧等轻元素敏感 | 散射低通量、亮度低 | |
其他 技术 | 超声波检测技术 | 通过声波变化较为灵敏地持续无损监测电极材料的机械性能和结构变化 | 超声检测设备较大,难以与电池组组装 |
拉曼散射技术 | 定性定量检测电极材料结构变化以及样品浓度 | 时间分辨率差;难以在液体电解质中成像离子传输过程 |
1 | SUN H T, MEI L, LIANG J F, et al. Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage[J]. Science, 2017, 356(6338): 599-604. |
2 | ASSAT G, TARASCON J M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries[J]. Nature Energy, 2018, 3(5): 373-386. |
3 | PAREKH M H, LI B, PALANISAMY M, et al. In situ thermal runaway detection in lithium-ion batteries with an integrated internal sensor[J]. ACS Applied Energy Materials, 2020, 3(8): 7997-8008. |
4 | TANG F C, WU Z B, YANG C, et al. Synchrotron X-ray tomography for rechargeable battery research: fundamentals, setups and applications[J]. Small Methods, 2021, 5(9): e2100557. |
5 | 邓林旺, 冯天宇, 舒时伟, 等. 锂离子电池无损析锂检测研究进展[J]. 储能科学与技术, 2023, 12(1): 263-277. |
DENG L W, FENG T Y, SHU S W, et al. Nondestructive lithium plating online detection for lithium-ion batteries: A review [J]. Energy Storage Science and Technology, 2023, 12(1): 263-277. | |
6 | LIU Q N, TANG Y F, SUN H M, et al. In situ electrochemical study of Na-O2/CO2 batteries in an environmental transmission electron microscope[J]. ACS Nano, 2020, 14(10): 13232-13245. |
7 | HAN S B, CAI C, YANG F, et al. Interrogation of the reaction mechanism in a Na-O2 battery using in situ transmission electron microscopy[J]. ACS Nano, 2020, 14(3): 3669-3677. |
8 | RONG G L, ZHANG X Y, ZHAO W, et al. Liquid-phase electrochemical scanning electron microscopy for in situ investigation of lithium dendrite growth and dissolution[J]. Advanced Materials, 2017, 29(13): 1606187. |
9 | GOLOZAR M, PAOLELLA A, DEMERS H, et al. In situ observation of solid electrolyte interphase evolution in a lithium metal battery[J]. Communications Chemistry, 2019, 2(1). |
10 | ZACHMAN M J, TU Z Y, CHOUDHURY S, et al. Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries[J]. Nature, 2018, 560(7718): 345-349. |
11 | WU H, ZHUO D, KONG D S, et al. Improving battery safety by early detection of internal shorting with a bifunctional separator[J]. Nature Communications, 2014, 5(1): 5193. |
12 | 石爽, 吕娜伟, 马敬轩, 等. 不同类型气体探测对磷酸铁锂电池储能舱过充安全预警有效性对比 [J]. 储能科学与技术, 2022, 11(8): 2452-2462. |
SHI S, LYU N W, MA J X, et al. Comparative study on the effectiveness of different types of gas detection on the overcharge safety early warning of a lithium iron phosphate battery energy storage compartment[J]. Energy Storage Science and Technology, 2022,11(8): 2452-2462. | |
13 | CHANDRASHEKAR S, TREASE N M, CHANG H J, et al. 7Li MRI of Li batteries reveals location of microstructural lithium [J]. Nature Materials, 2012, 11(4): 311-315. |
14 | LOULI A J, ELDESOKY A, WEBER R, et al. Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis[J]. Nature Energy, 2020, 5(9): 693-702. |
15 | HARRY K J, HALLINAN D T, PARKINSON D Y, et al. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes [J]. Nature Materials, 2014, 13(1): 69-73. |
16 | HEENAN T M M, TAN C, HACK J, et al. Developments in X-ray tomography characterization for electrochemical devices[J]. Materials Today, 2019, 31: 69-85. |
17 | XIANG Y X, LI X, CHENG Y Q, et al. Advanced characterization techniques for solid state lithium battery research[J]. Materials Today, 2020, 36: 139-157. |
18 | 邓哲, 黄震宇, 刘磊, 等. 超声技术在锂离子电池表征中的应用 [J]. 储能科学与技术, 2019, 8(6): 1033-1039. |
DENG Z, HUANG Z Y, LIU L, et al. Applications of ultrasound technique in characterization of lithium-ion batteries [J]. Energy Storage Science and Technology, 2019, 8(6): 1033-1039. | |
19 | SUN H B, MURALIDHARAN N, AMIN R, et al. Ultrasonic nondestructive diagnosis of lithium-ion batteries with multiple frequencies[J]. Journal of Power Sources, 2022, 549: https://doi.org/10.1016/j.jpowsour.2022.232091. |
20 | APPLEBERRY M C, KOWALSKI J A, AFRICK S A, et al. Avoiding thermal runaway in lithium-ion batteries using ultrasound detection of early failure mechanisms[J]. Journal of Power Sources, 2022, 535: https://doi.org/10.1016/j.jpowsour.2022.231423. |
21 | CHENG Q, WEI L, LIU Z, et al. Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy[J]. Nature Communications, 2018, 9(1): doi: 10.1038/s41467-018-05289-z. |
22 | LI B, PAREKH M H, ADAMS R A, et al. Lithium-ion battery thermal safety by early internal detection, prediction and prevention[J]. Scientific Reports, 2019, 9(1): 13255. |
23 | MIAO Z Y, LI Y P, XIAO X P, et al. Direct optical fiber monitor on stress evolution of the sulfur-based cathodes for lithium-sulfur batteries[J]. Energy & Environmental Science, 2022, 15(5): 2029-2038. |
24 | ZHAO E W, LIU T, JONSSON E, et al. In situ NMR metrology reveals reaction mechanisms in redox flow batteries[J]. Nature, 2020, 579(7798): 224-228. |
25 | GENG F S, YANG Q, LI C, et al. Mapping the distribution and the microstructural dimensions of metallic lithium deposits in an anode-free battery by in situ EPR imaging[J]. Chemistry of Materials, 2021, 33(21): 8223-8234. |
26 | LIU X S, WANG D D, LIU G, et al. Distinct charge dynamics in battery electrodes revealed by in situ and operando soft X-ray spectroscopy [J]. Nature Communications, 2013, 4: 2568. |
27 | ZIESCHE R F, ARLT T, FINEGAN D P, et al. 4D imaging of lithium-batteries using correlative neutron and X-ray tomography with a virtual unrolling technique[J].Nature Communications, 2020, 11(1): 777. |
28 | MIELE E, DOSE W M, MANYAKIN I, et al. Hollow-core optical fibre sensors for operando Raman spectroscopy investigation of Li-ion battery liquid electrolytes[J].Nature Communications, 2022, 13(1): 1651. |
29 | LIU X H, ZHANG L S, YU H Q, et al. Bridging multiscale characterization technologies and digital modeling to evaluate lithium battery full lifecycle[J]. Advanced Energy Materials, 2022, 12(33): https://doi.org/10.1002/aenm.202200889. |
30 | LEE C Y, CHEN C H, CHIU C Y, et al. Application of flexible four-in-one microsensor to internal real-time monitoring of proton exchange membrane fuel cell[J]. Sensors, 2018, 18(7): doi: 10.3390/s180722. |
31 | LEE C-Y, CHUANG S-M, LEE S-J, et al. Flexible micro sensor for in-situ monitoring temperature and voltage of coin cells[J]. Sensors and Actuators A: Physical, 2015, 232: 214-222. |
32 | BAGHDADI I, BRIAT O, GYAN P, et al. State of health assessment for lithium batteries based on voltage-time relaxation measure[J]. Electrochimica Acta, 2016, 194: 461-472. |
33 | ZHANG G S, CAO L, GE S H, et al. Reaction temperature sensing (RTS)-based control for Li-ion battery safety[J]. Scientific Reports, 2015, 5: 18237. |
34 | MUTYALA M S K, ZHAO J Z, LI J Y, et al. In-situ temperature measurement in lithium ion battery by transferable flexible thin film thermocouples[J]. Journal of Power Sources, 2014, 260: 43-49. |
35 | PENG X L, HAN J, ZHANG Q, et al. Real-time mechanical and thermal monitoring of lithium batteries with PVDF-TrFE thin films integrated within the battery[J]. Sensors and Actuators A: Physical, 2022, 338: doi: 10.1016/j.sna.2022.113484. |
36 | WANG H Y, YANG W J, KIM Y B. Analyzing in-plane temperature distribution via a micro-temperature sensor in a unit polymer electrolyte membrane fuel cell[J]. Applied Energy, 2014, 124: 148-155. |
37 | LAMMER M, KÖNIGSEDER A, HACKER V. Holistic methodology for characterisation of the thermally induced failure of commercially available 18650 lithium ion cells[J]. RSC Advances, 2017, 7(39): 24425-24429. |
38 | CAI T, VALECHA P, TRAN V, et al. Detection of Li-ion battery failure and venting with carbon dioxide sensors[J]. eTransportation, 2021, 7: doi: 10.1016/j.etran.2020.100100. |
39 | KOCH S, FILL A, BIRKE K P. Comprehensive gas analysis on large scale automotive lithium-ion cells in thermal runaway[J]. Journal of Power Sources, 2018, 398: 106-112. |
40 | WANG Z, ZHU L, LIU J W, et al. Gas sensing technology for the detection and early warning of battery thermal runaway: A review[J]. Energy & Fuels, 2022, 36(12): 6038-6057. |
41 | LIAO Z H, ZHANG J G, GAN Z Y, et al. Thermal runaway warning of lithium-ion batteries based on photoacoustic spectroscopy gas sensing technology[J]. International Journal of Energy Research, 2022, 46(15): 21694-21702. |
42 | LYU S Q, LI N, SUN L, et al. Rapid operando gas monitor for commercial lithium ion batteries: Gas evolution and relation with electrode materials[J]. Journal of Energy Chemistry, 2022, 72: 14-25. |
43 | JIN Y, ZHENG Z K, WEI D H, et al. Detection of micro-scale Li dendrite via H2 gas capture for early safety warning[J]. Joule, 2020, 4(8): 1714-17129. |
44 | HUANG Y C, XIAO X L, KANG H F, et al. Thermal management of polymer electrolyte membrane fuel cells: A critical review of heat transfer mechanisms, cooling approaches, and advanced cooling techniques analysis[J]. Energy Conversion and Management, 2022, 254: doi: 10.1016/j.enconman.2022.115221. |
45 | WANG H Q, MORANDO S, GAILLARD A, et al. Sensor development and optimization for a proton exchange membrane fuel cell system in automotive applications[J]. Journal of Power Sources, 2021, 487: 10.1016/j.jpowsour.2020.229415. |
46 | PENG J, ZHOU X, JIA S H, et al. High precision strain monitoring for lithium ion batteries based on fiber Bragg grating sensors[J]. Journal of Power Sources, 2019, 433: 10.1016/j.jpowsour.2019.226692. |
47 | BAE C J, MANANDHAR A, KIESEL P, et al. Monitoring the strain evolution of lithium-ion battery electrodes using an optical fiber Bragg grating sensor[J]. Energy Technology, 2016, 4(7): 851-855. |
48 | HUANG J Q, HAN X L, LIU F, et al. Monitoring battery electrolyte chemistry via in-operando tilted fiber Bragg grating sensors [J]. Energy & Environmental Science, 2021, 14(12): 6464-6475. |
49 | NASCIMENTO M, NOVAIS S, DING M S, et al. Internal strain and temperature discrimination with optical fiber hybrid sensors in Li-ion batteries[J]. Journal of Power Sources, 2019, 410/411: 1-9. |
50 | HUANG J Q, ALBERO BLANQUER L, BONEFACINO J, et al. Operando decoding of chemical and thermal events in commercial Na(Li)-ion cells via optical sensors[J]. Nature Energy, 2020, 5(9): 674-83. |
51 | LI Y P, ZHANG Y, LI Z, et al. Operando decoding of surface strain in anode-free lithium metal batteries via optical fiber sensor[J]. Advanced Science, 2022, 9(26): doi.org/10.1002/advs.202203247. |
52 | REES G J, SPENCER JOLLY D, NING Z Y, et al. Imaging sodium dendrite growth in all-solid-state sodium batteries using 23Na T2-weighted magnetic resonance imaging[J]. Angewandte Chemie International Edition, 2021, 60(4): 2110-2115. |
53 | GUNNARSDóTTIR A B, AMANCHUKWU C V, MENKIN S, et al. Noninvasive in situ NMR study of "dead lithium" formation and lithium corrosion in full-cell lithium metal batteries[J]. Journal of the American Chemical Society, 2020, 142(49): 20814-20827. |
54 | DUTOIT C E, TANG M X, GOURIER D, et al. Monitoring metallic sub-micrometric lithium structures in Li-ion batteries by in situ electron paramagnetic resonance correlated spectroscopy and imaging[J]. Nature Communications, 2021, 12(1): 1410. |
55 | BHATTACHARYYA R, KEY B, CHEN H L, et al. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries [J]. Nature Materials, 2010, 9(6): 504-510. |
56 | HSIEH Y-C, LEIßING M, NOWAK S, et al. Quantification of dead lithium via in situ nuclear magnetic resonance spectroscopy[J]. Cell Reports Physical Science, 2020, 1(8): doi:10.1016/j.xcrp.2020.100139 . |
57 | PECHER O, CARRETERO-GONZÁLEZ J, GRIFFITH K J, et al. Materials' methods: NMR in battery research[J]. Chemistry of Materials, 2016, 29(1): 213-242. |
58 | COLUMBUS D, ARUNACHALAM V, GLANG F, et al. Direct detection of lithium exchange across the solid electrolyte interphase by 7Li chemical exchange saturation transfer[J]. Journal of the American Chemical Society, 2022, 144(22): 9836-9844. |
59 | KUPERS V, KOLEK M, BIEKER P, et al. In situ 7Li-NMR analysis of lithium metal surface deposits with varying electrolyte compositions and concentrations[J]. Phys Chem Chem Phys, 2019, 21(47): 26084-26094. |
60 | LIU M, WANG C, ZHAO C L, et al. Quantification of the Li-ion diffusion over an interface coating in all-solid-state batteries via NMR measurements[J]. Nature Communications, 2021, 12(1): 5943. |
61 | MARKER K, XU C, GREY C P. Operando NMR of NMC811/graphite lithium-ion batteries: Structure, dynamics, and lithium metal deposition[J]. Journal of the American Chemical Society, 2020, 142(41): 17447-17456. |
62 | JANOSCHKA T, MARTIN N, HAGER M D, et al. An aqueous redox-flow battery with high capacity and power: The TEMPTMA/MV system[J]. Angewandte Chemie International Edition, 2016, 55(46): 14427-14430. |
63 | WANDT J, MARINO C, GASTEIGER H A, et al. Operando electron paramagnetic resonance spectroscopy-Formation of mossy lithium on lithium anodes during charge-discharge cycling [J]. Energy & Environmental Science, 2015, 8(4): 1358-1367. |
64 | WANG B, LE FEVRE L W, BROOKFIELD A, et al. Resolution of lithium deposition versus intercalation of graphite anodes in lithium ion batteries: An in situ electron paramagnetic resonance study[J]. Angewandte Chemie International Edition, 2021, 60(40): 21860-21867. |
65 | LIN F, LIU Y J, YU X Q, et al. Synchrotron X-ray analytical techniques for studying materials electrochemistry in rechargeable batteries[J]. Chemical Reviews, 2017, 117(21): 13123-13186. |
66 | SWALLOW J E N, FRASER M W, KNEUSELS N H, et al. Revealing solid electrolyte interphase formation through interface-sensitive operando X-ray absorption spectroscopy[J]. Nature Communications, 2022, 13(1): 6070. |
67 | SCHELLENBERGER M, GOLNAK R, QUEVEDO GARZON W G, et al. Accessing the solid electrolyte interphase on silicon anodes for lithium-ion batteries in-situ through transmission soft X-ray absorption spectroscopy[J]. Materials Today Advances, 2022, 14: https://doi.org/10.1016/j.mtadv.2022.100215. |
68 | WANDT J, FREIBERG A, THOMAS R, et al. Transition metal dissolution and deposition in Li-ion batteries investigated by operando X-ray absorption spectroscopy[J]. Journal of Materials Chemistry A, 2016, 4(47): 18300-18305. |
69 | BAUMGARTEL H. X-Ray absorption-Principles, applications, techniques of EXAFS, SEXAFS and XANES. Von D. Koningsberger und R. Prins. John Wiley & Sons Ltd., Chichester 1988. 673 S., Abb., Tab., Formeln. ISBN 0-471-87547-3[J]. Nachrichten aus Chemie, Technik und Laboratorium, 1988, 36(6): 650. |
70 | LI Y Y, EL GABALY F, FERGUSON T R, et al. Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes[J]. Nature Materials, 2014, 13(12): 1149-1156. |
71 | SUN G, YU F D, LU M, et al. Surface chemical heterogeneous distribution in over-lithiated Li1+ xCoO2 electrodes [J]. Nature Communications, 2022, 13(1): 6464. |
72 | LAHTINEN K, LABMAYR M, MÄKELÄ V, et al. Long-term cycling behavior of Mg-doped LiCoO2 materials investigated with the help of laboratory scale X-ray absorption near-edge spectroscopy[J]. Materials Today Energy, 2022, 27: 101040-101053. |
73 | SHEARING P R, HOWARD L E, JØRGENSEN P S, et al. Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery[J]. Electrochemistry Communications, 2010, 12(3): 374-377. |
74 | BAK S-M, SHADIKE Z, LIN R Q, et al. In situ/operando synchrotron-based X-ray techniques for lithium-ion battery research [J]. NPG Asia Materials, 2018, 10(7): 563-580. |
75 | WANG J J, ENG C, CHEN-WIEGART Y C C, et al. Probing three-dimensional sodiation-desodiation equilibrium in sodium-ion batteries by in situ hard X-ray nanotomography[J]. Nature Communications, 2015, 6: 7496. |
76 | BOYCE A M, MARTÍNEZ-PAÑEDA E, WADE A, et al. Cracking predictions of lithium-ion battery electrodes by X-ray computed tomography and modelling[J].Journal of Power Sources, 2022, 526: 10.1016/j.jpowsour.2022.231119. |
77 | HOU J W, WU W C, LI L F, et al. Estimation of remaining capacity of lithium-ion batteries based on X-ray computed tomography[J]. Journal of Energy Storage, 2022, 55: . |
78 | WITTE K, SPATH A, FINIZIO S, et al. From 2D STXM to 3D imaging: Soft X-ray laminography of thin specimens[J]. Nano Letters, 2020, 20(2): 1305-1314. |
79 | YU Y S, FARMAND M, KIM C, et al. Three-dimensional localization of nanoscale battery reactions using soft X-ray tomography[J]. Nature Communications, 2018, 9(1): 921. |
80 | DEEVANHXAY P, SASABE T, MINAMI K, et al. Oblique soft X-ray tomography as a non-destructive method for morphology diagnostics in degradation of proton-exchange membrane fuel cell [J]. Electrochimica Acta, 2014, 135: 68-76. |
81 | LIANG G M, DIDIER C, GUO Z P, et al. Understanding rechargeable battery function using in operando neutron powder diffraction [J]. Adv Mater, 2020, 32(18): e1904528. |
82 | WANG C Q, WANG R, HUANG Z Y, et al. Unveiling the migration behavior of lithium ions in NCM/graphite full cell via in operando neutron diffraction[J]. Energy Storage Materials, 2022, 44: 1-9. |
83 | LYU S, VERHALLEN T, VASILEIADIS A, et al. Operando monitoring the lithium spatial distribution of lithium metal anodes[J]. Nature Communications, 2018, 9(1): 2152. |
84 | RISSE S, HÄRK E, KENT B, et al. Operando analysis of a lithium/sulfur battery by small-angle neutron scattering[J]. ACS Nano, 2019, 13(9): 10233-10241. |
85 | COPLEY R J, CUMMING D, WU Y, et al. Measurements and modelling of the response of an ultrasonic pulse to a lithium-ion battery as a precursor for state of charge estimation[J]. Journal of Energy Storage, 2021, 36: 102406-102421. |
86 | HSIEH A G, BHADRA S, HERTZBERG B J, et al. Electrochemical- acoustic time of flight: In operando correlation of physical dynamics with battery charge and health[J]. Energy & Environmental Science, 2015, 8(5): 1569-1577. |
87 | ZHAO G Q, LIU Y, LIU G, et al. State-of-charge and state-of-health estimation for lithium-ion battery using the direct wave signals of guided wave[J]. Journal of Energy Storage, 2021, 39: 102657-102668. |
88 | DENG Z, HUANG Z Y, SHEN Y, et al. Ultrasonic scanning to observe wetting and "unwetting" in Li-ion pouch cells[J]. Joule, 2020, 4(9): 2017-2029. |
89 | BOMMIER C, CHANG W, LU Y F, et al. In operando acoustic detection of lithium metal plating in commercial LiCoO2/graphite pouch cells[J]. Cell Reports Physical Science, 2020, 1(4): 10.1016/j.xcrp.2020.100035 . |
90 | LANG S Y, YU S H, FENG X R, et al. Understanding the lithium-sulfur battery redox reactions via operando confocal Raman microscopy[J]. Nature Communications, 2022, 13(1): 4811. |
91 | FONSECA RODRIGUES M T, MARONI V A, GOSZTOLA D J, et al. Lithium acetylide: A spectroscopic marker for lithium deposition during fast charging of Li-ion cells[J]. ACS Applied Energy Materials, 2018, 2(1): 873-881. |
92 | NEALE A R, MILAN D C, BRAGA F, et al. Lithium insertion into graphitic carbon observed via operando Kerr-gated Raman spectroscopy enables high state of charge diagnostics[J]. ACS Energy Letters, 2022, 7(8): 2611-2618. |
93 | WEI Z, SALEHI A, LIN G Z, et al. Probing Li-ion concentration in an operating lithium ion battery using in situ Raman spectroscopy[J]. Journal of Power Sources, 2020, 449: 10.1016/j.jpowsour.2019.227361. |
94 | FENG X N, PAN Y, HE X M, et al. Detecting the internal short circuit in large-format lithium-ion battery using model-based fault-diagnosis algorithm[J]. Journal of Energy Storage, 2018, 18: 26-39. |
95 | FENG X N, WENG C H, OUYANG M G, et al. Online internal short circuit detection for a large format lithium ion battery[J]. Applied Energy, 2016, 161: 168-180. |
96 | ROMANENKO K, JIN L Y, HOWLETT P, et al. In situ MRI of operating solid-state lithium metal cells based on ionic plastic crystal electrolytes[J]. Chemistry of Materials, 2016, 28(8): 2844-2851. |
97 | CHIEN P H, FENG X Y, TANG M X, et al. Li distribution heterogeneity in solid electrolyte Li10GeP2S12 upon electrochemical cycling probed by 7Li MRI[J]. The Journal of Physical Chemistry Letters, 2018, 9(8): 1990-1998. |
98 | FREYTAG A I, PAURIC A D, KRACHKOVSKIY S A, et al. In situ magic-angle spinning 7Li NMR analysis of a full electrochemical lithium-ion battery using a jelly roll cell design[J]. Journal of the American Chemical Society, 2019, 141(35): 13758-13761. |
99 | SONG B H, DHIMAN I, CAROTHERS J C, et al. Dynamic lithium distribution upon dendrite growth and shorting revealed by operando neutron imaging[J]. ACS Energy Letters, 2019, 4(10): 2402-2408. |
100 | YAMANAKA T, NAKAGAWA H, TSUBOUCHI S, et al. In situ diagnosis of the electrolyte solution in a laminate lithium ion battery by using ultrafine multi-probe Raman spectroscopy[J]. Journal of Power Sources, 2017, 359: 435-440. |
101 | YAO N, CHEN X, FU Z H, et al. Applying classical, ab initio, and machine-learning molecular dynamics simulations to the liquid electrolyte for rechargeable batteries[J]. Chemical Reviews, 2022, 122(12): 10970-11021. |
102 | SUN Y W, YANG T Z, JI H Q, et al. Boosting the optimization of lithium metal batteries by molecular dynamics simulations: A perspective[J]. Advanced Energy Materials, 2020, 10(41): 10.1002/aenm.202002373. |
103 | 张慧敏, 王京, 王一博, 等. 锂离子电池SEI多尺度建模研究展望[J]. 储能科学与技术, 2023, 12(2): 366-382. |
ZHANG H M, WANG J, WANG Y B, et al. Multiscale modeling of the SEI of lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(2): 366-382. | |
104 | 陈龙, 夏权, 任羿, 等. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-23. |
CHEN L, XIA Q, REN Y, et al. Research prospect on reliability of Li-ion battery packs under coupling of multiple physical fields[J]. Energy Storage Science and Technology, 2022, 11(7): 2316-2323. |
[1] | 吴毅, 孟亚宏, 张怡, 周铁, 刘继, 魏业文. 配电台区电池储能系统优化均衡控制研究[J]. 储能科学与技术, 2023, 12(5): 1655-1663. |
[2] | 李林泽, 张向文. 基于组合频率阻抗特征的锂离子电池健康状态估算[J]. 储能科学与技术, 2023, 12(5): 1705-1712. |
[3] | 刘家亮, 郭翠静, 汪奂伶. 基于火灾事故树模型的储能锂离子电池安全性检测方法与验证[J]. 储能科学与技术, 2023, 12(5): 1695-1704. |
[4] | 刘畅, 姚君君, 孙颖, 冯大明, 郑宏杰, 马天翼. 乳化/氧化协同制备高倍率钾离子电池负极用沥青基碳微球[J]. 储能科学与技术, 2023, 12(5): 1444-1452. |
[5] | 李欣雨, 韩雪冰, 卢兰光, 李建秋, 欧阳明高. 基于大倍率电流脉冲的动力锂离子电池阻抗模型优化[J]. 储能科学与技术, 2023, 12(5): 1686-1694. |
[6] | 李斌, 叶季蕾, 张宇, 时珊珊, 王皓靖, 刘丽丽, 李明哲. 含分布式新能源和机电混合储能接入的微网协调控制策略[J]. 储能科学与技术, 2023, 12(5): 1510-1515. |
[7] | 张吉栋, 杨展, 黄建国. 基于天然纤维素物质的C/TiO2/CuMoO4 微-纳结构复合纤维材料构筑及其电化学性能[J]. 储能科学与技术, 2023, 12(5): 1616-1624. |
[8] | 胡川, 胡志伟, 李振东, 李帅, 王豪, 王丽平. 调控LiPF6 基电解液溶剂化结构稳定富锂锰基正极界面[J]. 储能科学与技术, 2023, 12(5): 1604-1615. |
[9] | 边煜华, 刘朝孟, 高宣雯, 李健国, 王达, 李尚倬, 骆文彬. 醚基电解液中CoS2/NC作为钠离子电池高性能阳极的原因分析[J]. 储能科学与技术, 2023, 12(5): 1500-1509. |
[10] | 时文超, 刘宇, 张博冕, 李琪, 韩春华, 麦立强. 电解液添加剂稳定水系电池锌负极界面的研究进展[J]. 储能科学与技术, 2023, 12(5): 1589-1603. |
[11] | 王海, 边煜华, 王佳东, 刘朝阳, 张杰, 姚健, 高宣雯, 刘朝孟, 骆文彬. 退役锂离子电池锂资源回收工艺[J]. 储能科学与技术, 2023, 12(5): 1453-1460. |
[12] | 李金涛, 牟粤, 王静, 邱景义, 明海. 高镍正极材料的稳定改性方法研究综述[J]. 储能科学与技术, 2023, 12(5): 1636-1654. |
[13] | 屈康康, 刘亚华, 洪叠, 沈兆曦, 韩效钊, 张旭. 中性水系有机液流电池正极电解质的研究进展[J]. 储能科学与技术, 2023, 12(5): 1570-1588. |
[14] | 赵玉文, 杨欢, 郭俊朋, 张毅, 孙琦, 张志佳. 磁性金属元素在钠离子电池中的应用[J]. 储能科学与技术, 2023, 12(5): 1332-1347. |
[15] | 易永利, 于冉, 李武, 金翼, 戴哲仁. Mo, Al掺杂的Li7La3Zr2O12 基复合固态电解质的制备及全固态电池性能研究[J]. 储能科学与技术, 2023, 12(5): 1490-1499. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||