储能科学与技术 ›› 2023, Vol. 12 ›› Issue (5): 1713-1737.doi: 10.19799/j.cnki.2095-4239.2023.0081

• 储能测试与评价 • 上一篇    下一篇

电池无损检测监测方法分析

郝奕帆1(), 祝夏雨2, 王静1, 邱景义2, 明海2(), 方振华3   

  1. 1.燕山大学环境与化学工程学院,河北 秦皇岛 066004
    2.军事科学院防化研究院,北京 100191
    3.轻工业化学电源研究所,江苏 苏州 215600
  • 收稿日期:2023-02-17 修回日期:2023-03-15 出版日期:2023-05-05 发布日期:2023-05-29
  • 通讯作者: 明海 E-mail:hao.yf@stumail.ysu.edu.cn;hai.mingenergy@hotmail.com
  • 作者简介:郝奕帆(1999—),女,硕士研究生,主要从事电池检测与评估。E-mail:hao.yf@stumail.ysu.edu.cn

Analysis of battery nondestructive testing and monitoring methods

Yifan HAO1(), Xiayu ZHU2, Jing WANG1, Jingyi QIU2, Hai MING2(), Zhenhua FANG3   

  1. 1.School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, Hebei, China
    2.Research Institute of Chemical Defence, AMS, Beijing 100191, China
    3.Institute of Chemical Power Sources, Suzhou 215600, Jiangsu, China
  • Received:2023-02-17 Revised:2023-03-15 Online:2023-05-05 Published:2023-05-29
  • Contact: Hai MING E-mail:hao.yf@stumail.ysu.edu.cn;hai.mingenergy@hotmail.com

摘要:

电池作为可以实现能源时空调节的器件,是优化能源应用、提高能源综合使用效率的最佳方法之一。随着储能需求的增加及大规模储能系统的广泛应用,高能量密度、长循环寿命的电池成为当前研究的重点。然而,随着电池性能的提升,其安全性问题也日益凸显,电池安全事故往往与电池的有机电解液体系易燃易爆属性、大电流充放电而诱发的热蓄积、电池单体结构以及模组的热电环控技术紧密关联。无损的表征手段可最大限度避免外界干扰,在真实的环境和使用工况下对电池实施原位检测分析,从而更清晰准确地表达和监测电池使役行为,获得电池的反应瞬态和健康状态等关键信息,精准分析电池热失控、寿命衰减等性能衍变规律和反应原理,进一步指导电极材料的制备、电池结构的设计及模组控制,提升电池的安全性和可靠性。本综述对近些年报道的电池无损检测监测表征方法进行了梳理,包括传感器、磁共振、X射线、中子散射、超声波检测、拉曼散射技术等,分别阐述了其原理、应用方式及获取信息的特征,并对各表征技术进行了综合比较,尤其是电池数据的互为支撑关系,为深入探究电池在不同工况下的内部微结构演变与电性能、安全性等的关系提供方法和技术手段,提高电池使用效能,为电池事故预警和寿命预警机制的建立提供支撑。

关键词: 无损检测, 原位表征, 电池, 性能衍变, 预警

Abstract:

As a technology that can adjust energy, time, and space, batteries are one of the best ways to optimize energy applications and improve the comprehensive efficiency of energy use. With the increasing demand for energy storage and the wide application of large-scale energy storage systems, batteries with high-energy density and long-cycle life have become a current research focus. However, with the improved battery performance, its safety has become increasingly a concern. Battery accidents are often closely related to the flammable and explosive properties of organic electrolytes, heat accumulation induced by high current charging and discharging, battery monomer structure, and the thermoelectric loop control technology of modules. Nondestructive characterization means are used to accurately analyze the battery performance evolution, such as thermal runaway and life attenuation. These techniques can considerably avoid external interference and conduct insitu detection and analysis of the battery under the real environment and operating conditions to express and monitor the battery service behavior clearly and accurately. Thus, critical information, such as the reaction principle and the health state of the battery, can be derived. Furthermore, preparing electrode materials and designing and grouping battery structures improve the safety and reliability of the battery. Herein, the recently reported battery nondestructive testing, monitoring, and characterization methods are reviewed, including sensor, magnetic resonance, X-ray, neutron scattering, ultrasonic detection, and Raman scattering. These methods help to describe their principles, application methods, and characteristics of information acquisition, making a comprehensive comparison of each characterization technology, especially the mutually supportive relationship of battery data. It provides methods and technical means to deeply explore the relationship between the internal microstructure evolution, electrical performance, and battery safety under different working conditions, which gradually improve the battery efficiency and support the establishment of battery accident warning and life warning mechanisms.

Key words: non-destructive testing, in-situ characterization, battery, evolution of performance, warning

中图分类号: