1 |
WEI Z B, HU J, LI Y, et al. Hierarchical soft measurement of load current and state of charge for future smart lithium-ion batteries[J]. Applied Energy, 2022, 307: 118246.
|
2 |
WANG Q, YE M, CAI X, et al. Transferable data-driven capacity estimation for lithium-ion batteries with deep learning: A case study from laboratory to field applications[J]. Applied Energy, 2023, 350: 121747.
|
3 |
MA Y C, WANG Q, YE M, et al. Robust control for the hybrid energy system of an electric loader[J]. Machines, 2023, 11(4): 454.
|
4 |
BAI H Y, SONG Z Y. Lithium-ion battery, sodium-ion battery, or redox-flow battery: A comprehensive comparison in renewable energy systems[J]. Journal of Power Sources, 2023, 580: 233426.
|
5 |
WEI M, YE M, ZHANG C W, et al. A multi-scale learning approach for remaining useful life prediction of lithium-ion batteries based on variational mode decomposition and Monte Carlo sampling[J]. Energy, 2023, 283: 129086.
|
6 |
申江卫, 高承志, 舒星, 等. 基于迁移模型的锂离子电池宽温度全寿命SOC与可用容量联合估计[J]. 电工技术学报, 2023, 38(11): 3052-3063.
|
|
SHEN J W, GAO C Z, SHU X, et al. Joint estimation of SOC and usable capacity of lithium-ion battery with wide temperature and full life based on migration model[J]. Transactions of China Electrotechnical Society, 2023, 38(11): 3052-3063.
|
7 |
谢翌, 江迪生, 张扬军, 等. 新能源汽车锂离子电池组SOC-SOP联合估计算法[J]. 汽车安全与节能学报, 2022, 13(3): 580-589.
|
|
XIE Y, JIANG D S, ZHANG Y J, et al. Joint estimation algorithm of SOC-SOP for lithium-ion battery pack in new energy vehicles[J]. Journal of Automotive Safety and Energy, 2022, 13(3): 580-589.
|
8 |
黎冲, 王成辉, 王高, 等. 锂电池SOC估计的实现方法分析与性能对比[J]. 储能科学与技术, 2022, 11(10): 3328-3344.
|
|
LI C, WANG C H, WANG G, et al. Review on implementation method analysis and performance comparison of lithium battery state of charge estimation[J]. Energy Storage Science and Technology, 2022, 11(10): 3328-3344.
|
9 |
付诗意, 吕桃林, 闵凡奇, 等. 电动汽车用锂离子电池SOC估算方法综述[J]. 储能科学与技术, 2021, 10(3): 1127-1136.
|
|
FU S Y, LYU T L, MIN F Q, et al. Review of estimation methods on SOC of lithium-ion batteries in electric vehicles[J]. Energy Storage Science and Technology, 2021, 10(3): 1127-1136.
|
10 |
WEI Z B, DONG G Z, ZHANG X N, et al. Noise-immune model identification and state-of-charge estimation for lithium-ion battery using bilinear parameterization[J]. IEEE Transactions on Industrial Electronics, 2021, 68(1): 312-323.
|
11 |
TANG R L, ZHANG S H, ZHANG S Y, et al. Model parameter identification for lithium-ion batteries using adaptive multi-context cooperatively co-evolutionary parallel differential evolution algorithm[J]. Journal of Energy Storage, 2023, 58: 106432.
|
12 |
LI W, XIE Y, LIU K L, et al. An enhanced thermal model with virtual resistance technique for pouch batteries at low temperature and high current rates[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11(1): 44-56.
|
13 |
武龙星, 庞辉, 晋佳敏, 等. 基于电化学模型的锂离子电池荷电状态估计方法综述[J]. 电工技术学报, 2022, 37(7): 1703-1725.
|
|
WU L X, PANG H, JIN J M, et al. A review of SOC estimation methods for lithium-ion batteries based on electrochemical model[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1703-1725.
|
14 |
庞辉, 郭龙, 武龙星, 等. 考虑环境温度影响的锂离子电池改进双极化模型及其荷电状态估算[J]. 电工技术学报, 2021, 36(10): 2178-2189.
|
|
PANG H, GUO L, WU L X, et al. An improved dual polarization model of Li-ion battery and its state of charge estimation considering ambient temperature[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2178-2189.
|
15 |
LAI X, WANG S Y, HE L, et al. A hybrid state-of-charge estimation method based on credible increment for electric vehicle applications with large sensor and model errors[J]. Journal of Energy Storage, 2020, 27: 101106.
|
16 |
申江卫, 周灿彪, 舒星, 等. 宽温度环境下基于改进电化学模型的锂电池荷电状态估计[J]. 储能科学与技术, 2023, 12(9): 2904-2916.
|
|
SHEN J W, ZHOU C B, SHU X, et al. State of charge estimation for lithium batteries based on an improved electrochemical model at a wide temperature environment[J]. Energy Storage Science and Technology, 2023, 12(9): 2904-2916.
|
17 |
XIONG R, HUANG J T, DUAN Y Z, et al. Enhanced Lithium-ion battery model considering critical surface charge behavior[J]. Applied Energy, 2022, 314: 118915.
|
18 |
CUI Z H, KANG L, LI L W, et al. A combined state-of-charge estimation method for lithium-ion battery using an improved BGRU network and UKF[J]. Energy, 2022, 259: 124933.
|
19 |
HE H W, ZHAO X Y, LI J W, et al. Voltage abnormality-based fault diagnosis for batteries in electric buses with a self-adapting update model[J]. Journal of Energy Storage, 2022, 53: 105074.
|
20 |
LIAN G Q, YE M, WANG Q, et al. Noise-immune state of charge estimation for lithium-ion batteries based on optimized dynamic model and improved adaptive unscented Kalman filter under wide.
|