储能科学与技术 ›› 2025, Vol. 14 ›› Issue (4): 1603-1616.doi: 10.19799/j.cnki.2095-4239.2024.0990
收稿日期:
2024-10-28
修回日期:
2024-11-26
出版日期:
2025-04-28
发布日期:
2025-05-20
通讯作者:
周俊
E-mail:1114349319@qq.com;710257592@qq.com
作者简介:
王鹏(2000—),男,硕士研究生,研究方向为锂离子电池故障诊断理论与方法,E-mail:1114349319@qq.com;
基金资助:
Peng WANG1(), Jun ZHOU1(
), Xing WU1,2, Tao LIU1
Received:
2024-10-28
Revised:
2024-11-26
Online:
2025-04-28
Published:
2025-05-20
Contact:
Jun ZHOU
E-mail:1114349319@qq.com;710257592@qq.com
摘要:
针对锂离子电池采用极限学习机进行剩余使用寿命预测时,存在预测结果不稳定和预测准确度不高的问题,提出采用猎豹优化算法优化ELM对锂离子电池剩余使用寿命进行预测。提取锂离子电池数据集中等压降放电时间作为间接健康因子;引入猎豹优化算法对ELM模型参数进行优化,并使用改进的Sine混沌映射优化猎豹初始种群;最后采用NASA卓越预测中心提供的电池数据集和牛津大学提供的电池老化数据集对该模型有效性和准确性进行验证。通过原始ELM模型进行多次实验,得到该数据集进行预测的最佳训练数据量以及最佳神经元数量;利用所提出的SCO-ELM模型进行电池的剩余使用寿命预测,对比原始ELM与遗传算法优化ELM模型,均方根误差在0.004以下,且具有较快的预测时间;之后进行电池全周期寿命预测,预测精度平均提升40%,预测速度提升78%以上;使用B0005号电池训练结果对同类型电池组进行预测,预测精度平均提升25%,预测速度提升75%以上。实验结果表明,所提方法具有预测准确度高、预测速度快、操作复杂度低和模型稳定等优势。
中图分类号:
王鹏, 周俊, 伍星, 刘韬. 改进Sine混沌映射CO-ELM锂离子电池RUL预测[J]. 储能科学与技术, 2025, 14(4): 1603-1616.
Peng WANG, Jun ZHOU, Xing WU, Tao LIU. Remaining useful life prediction of a lithium-ion battery based on a cheetah optimization-extreme learning machine with improved Sine chaotic mapping[J]. Energy Storage Science and Technology, 2025, 14(4): 1603-1616.
表8
全体电池全寿命容量预测评估"
电池数据集 | 训练模型 | RMSE | r2 | 训练时间/s | 所提出模型预测精度提升/% | 所提出模型预测速度提升/% |
---|---|---|---|---|---|---|
B0005 | ELM | 0.010647 | 0.995246 | 0.000568 | 52.6439 | -11093.1 |
GA-ELM | 0.007076 | 0.997417 | 0.297073 | 28.7451 | 78.5989 | |
SCO-ELM | 0.005042 | 0.998105 | 0.063577 | — | — | |
B0006 | ELM | 0.021884 | 0.987346 | 0.000620 | 22.1395 | -10181.1 |
GA-ELM | 0.022642 | 0.987482 | 0.309738 | 24.7460 | 79.4203 | |
SCO-ELM | 0.017039 | 0.992614 | 0.063743 | — | — | |
B0007 | ELM | 0.011545 | 0.990976 | 0.000621 | 41.8709 | -10851.2 |
GA-ELM | 0.012422 | 0.993708 | 0.323310 | 45.9749 | 78.9654 | |
SCO-ELM | 0.006711 | 0.995926 | 0.068007 | — | — | |
B0018 | ELM | 0.013556 | 0.987221 | 0.000332 | 51.5639 | -19214.8 |
GA-ELM | 0.013485 | 0.994790 | 0.299022 | 51.3089 | 78.5551 | |
SCO-ELM | 0.006566 | 0.995386 | 0.064125 | — | — |
表9
牛津数据集全体电池全寿命容量预测评估"
电池数据集 | 训练模型 | RMSE | r2 | 训练时间/s | 所提出模型预测精度提升/% | 所提出模型预测速度提升/% |
---|---|---|---|---|---|---|
Cell1 | ELM | 2.716782 | 0.995888 | 0.000183 | 59.2511 | -26477.0 |
GA-ELM | 4.070654 | 0.998893 | 0.255459 | 72.8039 | 80.9613 | |
SCO-ELM | 1.107058 | 0.999378 | 0.048636 | — | — | |
Cell2 | ELM | 5.636787 | 0.985548 | 0.001725 | 51.3515 | -3802.26 |
GA-ELM | 4.712764 | 0.989966 | 0.283344 | 41.8131 | 76.2430 | |
SCO-ELM | 2.742213 | 0.996132 | 0.067314 | — | — | |
Cell3 | ELM | 3.677723 | 0.992823 | 0.000530 | 65.7511 | -9124.91 |
GA-ELM | 2.149824 | 0.998175 | 0.274805 | 41.4101 | 82.2085 | |
SCO-ELM | 1.259580 | 0.999089 | 0.048892 | — | — | |
Cell4 | ELM | 1.996663 | 0.997868 | 0.000313 | 38.3942 | -14775.7 |
GA-ELM | 2.369038 | 0.997609 | 0.246447 | 48.0777 | 81.1071 | |
SCO-ELM | 1.230060 | 0.998659 | 0.046561 | — | — | |
Cell5 | ELM | 6.659058 | 0.975160 | 0.000156 | 78.2905 | -27470.5 |
GA-ELM | 2.119743 | 0.998413 | 0.243088 | 31.8007 | 82.3068 | |
SCO-ELM | 1.445650 | 0.998567 | 0.043010 | — | — | |
Cell6 | ELM | 2.911941 | 0.990940 | 0.000176 | 26.2630 | -25419.9 |
GA-ELM | 3.297497 | 0.991302 | 0.247977 | 34.8846 | 81.8874 | |
SCO-ELM | 2.147178 | 0.995321 | 0.044915 | — | — | |
Cell7 | ELM | 1.783023 | 0.997680 | 0.000568 | 30.6215 | -8816.20 |
GA-ELM | 6.045905 | 0.997251 | 0.270876 | 79.5393 | 81.3036 | |
SCO-ELM | 1.237035 | 0.998656 | 0.050644 | — | — | |
Cell8 | ELM | 8.656092 | 0.958370 | 0.000180 | 82.9039 | -27402.2 |
GA-ELM | 2.047289 | 0.998047 | 0.265714 | 27.7165 | 81.3694 | |
SCO-ELM | 1.479853 | 0.998106 | 0.049504 | — | — |
表10
B0005号电池进行同类电池容量预测"
电池数据集 | 训练模型 | RMSE | r2 | 训练时间/s | 所提出模型预测精度提升/% | 所提出模型预测速度提升/% |
---|---|---|---|---|---|---|
B0006 | ELM | 0.076788 | 0.899076 | 0.000411 | 60.6097 | -14018.3 |
GA-ELM | 0.032701 | 0.970286 | 0.270690 | 7.50436 | 78.5637 | |
SCO-ELM | 0.030247 | 0.974381 | 0.058026 | — | — | |
B0007 | ELM | 0.007618 | 0.995656 | 0.000308 | 19.5983 | -19180.8 |
GA-ELM | 0.009328 | 0.995792 | 0.285778 | 34.3375 | 79.2199 | |
SCO-ELM | 0.006125 | 0.996713 | 0.059385 | — | — | |
B0018 | ELM | 0.040932 | 0.898202 | 0.000295 | 19.8720 | -22317.3 |
GA-ELM | 0.037172 | 0.916285 | 0.274580 | 11.7669 | 75.9156 | |
SCO-ELM | 0.032798 | 0.929739 | 0.066131 | — | — |
1 | 卢婷, 杨文强. 锂离子电池全生命周期内评估参数及评估方法综述[J]. 储能科学与技术, 2020, 9(3): 657-669. DOI: 10.19799/j.cnki. 2095-4239.2019.0263. |
LU T, YANG W Q. Review of evaluation parameters and methods of lithium batteries throughout its life cycle[J]. Energy Storage Science and Technology, 2020, 9(3): 657-669. DOI: 10.19799/j.cnki.2095-4239.2019.0263. | |
2 | KIM I S. A technique for estimating the state of health of lithium batteries through a dual-sliding-mode observer[J]. IEEE Transactions on Power Electronics, 2010, 25(4): 1013-1022. DOI: 10.1109/TPEL.2009.2034966. |
3 | HE W, WILLIARD N, OSTERMAN M, et al. Prognostics of lithium-ion batteries based on Dempster-Shafer theory and the Bayesian Monte Carlo method[J]. Journal of Power Sources, 2011, 196(23): 10314-10321. DOI: 10.1016/j.jpowsour.2011. 08.040. |
4 | AN D, CHOI J H, KIM N H. Prognostics 101: A tutorial for particle filter-based prognostics algorithm using Matlab[J]. Reliability Engineering & System Safety, 2013, 115: 161-169. DOI: 10.1016/j.ress.2013.02.019. |
5 | SU X H, WANG S, PECHT M, et al. Prognostics of lithium-ion batteries based on different dimensional state equations in the particle filtering method[J]. Transactions of the Institute of Measurement and Control, 2017, 39(10): 1537-1546. |
6 | MIAO Q, XIE L, CUI H J, et al. Remaining useful life prediction of lithium-ion battery with unscented particle filter technique[J]. Microelectronics Reliability, 2013, 53(6): 805-810. DOI: 10.1016/j.microrel.2012.12.004. |
7 | HE W, WILLIARD N, CHEN C C, et al. State of charge estimation for electric vehicle batteries under an adaptive filtering framework[C]//Proceedings of the IEEE 2012 Prognostics and System Health Management Conference (PHM-2012 Beijing). May 23-25, 2012, Beijing, China. IEEE, 2012: 1-5. DOI: 10.1109/PHM. 2012.6228849. |
8 | WANG S L, FERNANDEZ C, CAO W, et al. An adaptive working state iterative calculation method of the power battery by using the improved Kalman filtering algorithm and considering the relaxation effect[J]. Journal of Power Sources, 2019, 428: 67-75. DOI: 10.1016/j.jpowsour.2019.04.089. |
9 | ZHAO Y, LIU P, WANG Z P, et al. Fault and defect diagnosis of battery for electric vehicles based on big data analysis methods[J]. Applied Energy, 2017, 207: 354-362. DOI: 10.1016/j.apenergy.2017.05.139. |
10 | EDDAHECH A, BRIAT O, BERTRAND N, et al. Behavior and state-of-health monitoring of Li-ion batteries using impedance spectroscopy and recurrent neural networks[J]. International Journal of Electrical Power & Energy Systems, 2012, 42(1): 487-494. DOI: 10.1016/j.ijepes.2012.04.050. |
11 | XIONG R, TIAN J P, SHEN W X, et al. Semi-supervised estimation of capacity degradation for lithium ion batteries with electrochemical impedance spectroscopy[J]. Journal of Energy Chemistry, 2023, 76: 404-413. DOI: 10.1016/j.jechem. 2022. 09.045. |
12 | PATIL M A, TAGADE P, HARIHARAN K S, et al. A novel multistage Support Vector Machine based approach for Li ion battery remaining useful life estimation[J]. Applied Energy, 2015, 159: 285-297. DOI: 10.1016/j.apenergy.2015.08.119. |
13 | LONG B, XIAN W M, JIANG L, et al. An improved autoregressive model by particle swarm optimization for prognostics of lithium-ion batteries[J]. Microelectronics Reliability, 2013, 53(6): 821-831. DOI: 10.1016/j.microrel.2013.01.006. |
14 | 姜媛媛, 刘柱, 罗慧, 等. 锂电池剩余寿命的ELM间接预测方法[J]. 电子测量与仪器学报, 2016, 30(2): 179-185. DOI: 10.13382/j.jemi. 2016.02.002. |
JIANG Y Y, LIU Z, LUO H, et al. ELM indirect prediction method for the remaining life of lithium-ion battery[J]. Journal of Electronic Measurement and Instrumentation, 2016, 30(2): 179-185. DOI: 10.13382/j.jemi.2016.02.002. | |
15 | 陈则王, 李福胜, 林娅, 等. 基于GA-ELM的锂离子电池RUL间接预测方法[J]. 计量学报, 2020, 41(6): 735-742. DOI: 10.3969/j.issn. 1000-1158.2020.06.17. |
CHEN Z W, LI F S, LIN Y, et al. Indirect prediction method of RUL for lithium-ion battery based on GA-ELM[J]. Acta Metrologica Sinica, 2020, 41(6): 735-742. DOI: 10.3969/j.issn.1000-1158. 2020.06.17. | |
16 | 刘柱, 姜媛媛, 罗慧, 等. 基于最优权阈值ELM算法的锂离子电池RUL预测[J]. 电源学报, 2018, 16(4): 168-173. DOI: 10.13234/j.issn.2095-2805.2018.4.168. |
LIU Z, JIANG Y Y, LUO H, et al. Prediction of lithium-ion battery RUL based on optimal weight and threshold using ELM algorithm[J]. Journal of Power Supply, 2018, 16(4): 168-173. DOI: 10. 13234/j.issn.2095-2805.2018.4.168. | |
17 | HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1/2/3): 489-501. DOI: 10.1016/j.neucom.2005.12.126. |
18 | AKBARI M A, ZARE M, AZIZIPANAH-ABARGHOOEE R, et al. The cheetah optimizer: A nature-inspired metaheuristic algorithm for large-scale optimization problems[J]. Scientific Reports, 2022, 12(1): 10953. DOI: 10.1038/s41598-022-14338-z. |
19 | 单梁, 强浩, 李军, 等. 基于Tent映射的混沌优化算法[J]. 控制与决策, 2005, 20(2): 179-182. DOI: 10.13195/j.cd.2005.02.60.shanl.013. |
SHAN L, QIANG H, LI J, et al. Chaotic optimization algorithm based on tent map[J]. Control and Decision, 2005, 20(2): 179-182. DOI: 10.13195/j.cd.2005.02.60.shanl.013. | |
20 | 刘磊, 姜博文, 周恒扬, 等. 融合改进Sine混沌映射的新型粒子群优化算法[J]. 西安交通大学学报, 2023, 57(8): 182-193. DOI: 10. 7652/xjtuxb202308018. |
LIU L, JIANG B W, ZHOU H Y, et al. A novel particle swarm optimization algorithm incorporating improved Sine chaos mapping[J]. Journal of Xi'an Jiaotong University, 2023, 57(8): 182-193. DOI: 10.7652/xjtuxb202308018. | |
21 | BIRKL C. Diagnosis and prognosis of degradation in lithium-ion batteries[D]. Oxford, South East England, UK: University of Oxford, 2017. |
[1] | 彭磊, 倪照鹏, 于越, 孙福鹏, 夏修龙, 张鹏, 孙思博. 过充导致三元锂电池电动汽车火灾的试验研究[J]. 储能科学与技术, 2025, 14(4): 1484-1495. |
[2] | 申江卫, 折亦鑫, 舒星, 刘永刚, 魏福星, 夏雪磊, 陈峥. 基于短时随机充电数据和优化卷积神经网络的锂电池健康状态估计[J]. 储能科学与技术, 2025, 14(4): 1585-1595. |
[3] | 刘瑞昊, 马小乐, 张宇萱, 朱曰莹, 刘仕强, 白广利. 基于绝热量热仪的锂离子电池热物性参数测试影响因素研究[J]. 储能科学与技术, 2025, 14(4): 1596-1602. |
[4] | 董作林, 宋金岩, 孟子迪. 基于模态分解和深度学习的锂离子电池寿命预测[J]. 储能科学与技术, 2025, 14(4): 1645-1653. |
[5] | 徐桂培, 刘浩, 赖洁文, 卢毅锋, 黄辉, 邸会芳, 王振兵. 干法电极技术在超级电容器和锂离子电池中的研究进展[J]. 储能科学与技术, 2025, 14(4): 1445-1460. |
[6] | 岳金明, 刘媛丽, 陈一霞, 禹习谦, 李泓. GC-MS检测锂离子电池电解液分离条件的研究[J]. 储能科学与技术, 2025, 14(4): 1564-1573. |
[7] | 廖兴群, 杨睿, 于立娟, 胡大林, 肖峰, 胡菁, 卢周广. 多功能电解液添加剂2,6-吡啶二甲腈稳定高电压钴酸锂[J]. 储能科学与技术, 2025, 14(4): 1331-1339. |
[8] | 武小兰, 马彭杰, 白志峰, 刘成龙, 郭桂芳, 张锦华. 一种锂离子电池组智能PID双层主动均衡控制方法[J]. 储能科学与技术, 2025, 14(3): 1150-1159. |
[9] | 曾帅波, 李涌仪, 彭静, 何梓星, 梁倬健, 徐伟, 蓝凌霄, 梁兴华. 基于三元锂离子电池的导电剂优化设计[J]. 储能科学与技术, 2025, 14(3): 1187-1197. |
[10] | 张朝龙, 陈阳, 刘梦玲, 张俣峰, 华国庆, 阴盼昐. 一种基于ICA-T特征和CNN-LA-BiLSTM的锂离子电池健康状态估计方法[J]. 储能科学与技术, 2025, 14(3): 1258-1269. |
[11] | 李南, 马静, 黄挺秀, 沈毅星, 沈旻, 江依义, 洪涛, 马国强, 马紫峰. 腈类化合物在高电压电解液中的研究进展[J]. 储能科学与技术, 2025, 14(3): 997-1009. |
[12] | 许陈程, 王湛, 李爽, 蒋江民, 鞠治成. 锂离子电池预锂化技术研究进展及工程化应用展望[J]. 储能科学与技术, 2025, 14(3): 930-946. |
[13] | 陈会明, 蔡艺嘉, 尹文骥, 陈美芬, 黄有国, 胡思江, 王红强, 李庆余. 铬钼双掺杂调控富锂锰基正极材料结构和电化学性能[J]. 储能科学与技术, 2025, 14(3): 1123-1132. |
[14] | 周丽萍, 周德清, 郑锋华, 潘齐常, 胡思江, 蒋永杰, 王红强, 李庆余. 锂离子电池Si@Void@C复合负极材料的制备及其应用[J]. 储能科学与技术, 2025, 14(3): 1115-1122. |
[15] | 张新宇, 罗声豪, 吴颖欣, 刘针莹, 张立志, 凌子夜. 复合相变材料用于锂离子电池热管理和热失控防护研究进展[J]. 储能科学与技术, 2025, 14(3): 1040-1053. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||