储能科学与技术 ›› 2025, Vol. 14 ›› Issue (4): 1603-1616.doi: 10.19799/j.cnki.2095-4239.2024.0990

• 储能测试与评价 • 上一篇    下一篇

改进Sine混沌映射CO-ELM锂离子电池RUL预测

王鹏1(), 周俊1(), 伍星1,2, 刘韬1   

  1. 1.昆明理工大学机电工程学院,云南 昆明 650500
    2.滇西应用技术大学,云南 大理 671000
  • 收稿日期:2024-10-28 修回日期:2024-11-26 出版日期:2025-04-28 发布日期:2025-05-20
  • 通讯作者: 周俊 E-mail:1114349319@qq.com;710257592@qq.com
  • 作者简介:王鹏(2000—),男,硕士研究生,研究方向为锂离子电池故障诊断理论与方法,E-mail:1114349319@qq.com
  • 基金资助:
    云南省基础研究计划面上项目(202301AT070439);中船集团科技项目资助(2023530103002915)

Remaining useful life prediction of a lithium-ion battery based on a cheetah optimization-extreme learning machine with improved Sine chaotic mapping

Peng WANG1(), Jun ZHOU1(), Xing WU1,2, Tao LIU1   

  1. 1.Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
    2.West Yunnan University of Applied Sciences, Dali 671000, Yunnan, China
  • Received:2024-10-28 Revised:2024-11-26 Online:2025-04-28 Published:2025-05-20
  • Contact: Jun ZHOU E-mail:1114349319@qq.com;710257592@qq.com

摘要:

针对锂离子电池采用极限学习机进行剩余使用寿命预测时,存在预测结果不稳定和预测准确度不高的问题,提出采用猎豹优化算法优化ELM对锂离子电池剩余使用寿命进行预测。提取锂离子电池数据集中等压降放电时间作为间接健康因子;引入猎豹优化算法对ELM模型参数进行优化,并使用改进的Sine混沌映射优化猎豹初始种群;最后采用NASA卓越预测中心提供的电池数据集和牛津大学提供的电池老化数据集对该模型有效性和准确性进行验证。通过原始ELM模型进行多次实验,得到该数据集进行预测的最佳训练数据量以及最佳神经元数量;利用所提出的SCO-ELM模型进行电池的剩余使用寿命预测,对比原始ELM与遗传算法优化ELM模型,均方根误差在0.004以下,且具有较快的预测时间;之后进行电池全周期寿命预测,预测精度平均提升40%,预测速度提升78%以上;使用B0005号电池训练结果对同类型电池组进行预测,预测精度平均提升25%,预测速度提升75%以上。实验结果表明,所提方法具有预测准确度高、预测速度快、操作复杂度低和模型稳定等优势。

关键词: 锂离子电池, 剩余使用寿命, 极限学习机, 猎豹优化, 混沌映射

Abstract:

To address the challenges of unstable predictions and accuracy when using extreme learning machines (ELMs) to predict the remaining useful life of lithium-ion batteries, this study proposes a cheetah optimization (CO) algorithm to optimize the ELM model performance. The equal voltage drop discharge time, extracted from the lithium-ion battery dataset, is employed as an indirect health factor. Furthermore, the CO algorithm is introduced to optimize the ELM parameters. This initial population of the CO algorithm is improved using sine chaotic mapping. The effectiveness and accuracy of the proposed model are verified using the battery dataset provided by the NASA Center for Excellence Prediction and the Oxford Battery Degradation Dataset from Oxford University. The optimal amount of training data and the ideal number of neurons are obtained through multiple experiments with the original ELM model. The residual service life of batteries is predicted using the proposed SCO-ELM model. Compared with the original ELM and the genetic algorithm-optimized ELM model, the proposed SCO-ELM model achieves a root mean square error below 0.004 and significantly faster prediction times. The prediction accuracy improves by 40% on average and the prediction speed is improved by more than 78%. Using the training results of battery B0005 to predict the performance of similar battery packs, the prediction accuracy improves by 25% on average, and the prediction speed increases by more than 75%. Thus, the experimental results confirm that the proposed method offers high prediction accuracy, fast computation speed, low operation complexity, and a stable model.

Key words: lithium-ion battery, remaining useful life, extreme learning machine, cheetah optimization, chaotic mapping

中图分类号: