1 |
ZHANG G X, WEI X Z, CHEN S Q, et al. Comprehensive investigation of a slight overcharge on degradation and thermal runaway behavior of lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(29): 35054-35068. DOI:10.1021/acsami.1c06029.
|
2 |
XIE S, GONG Y Z, PING X K, et al. Effect of overcharge on the electrochemical and thermal safety behaviors of LiNi0.5Mn0.3Co0.2O2/graphite lithium-ion batteries[J]. Journal of Energy Storage, 2022, 46: 103829. DOI:10.1016/j.est.2021.103829.
|
3 |
HU J, LIU T, WANG X S, et al. Investigation on thermal runaway of 18650 lithium ion battery under thermal abuse coupled with charging[J]. Journal of Energy Storage, 2022, 51: 104482. DOI:10.1016/j.est.2022.104482.
|
4 |
WANG C J, ZHU Y L, GAO F, et al. Internal short circuit and thermal runaway evolution mechanism of fresh and retired lithium-ion batteries with LiFePO4 cathode during overcharge[J]. Applied Energy, 2022, 328: 120224. DOI:10.1016/j.apenergy. 2022.120224.
|
5 |
LI W F, WANG H W, OUYANG M G, et al. Theoretical and experimental analysis of the lithium-ion battery thermal runaway process based on the internal combustion engine combustion theory[J]. Energy Conversion and Management, 2019, 185: 211-222. DOI:10.1016/j.enconman.2019.02.008.
|
6 |
WANG Z, YANG H, LI Y, et al. Thermal runaway and fire behaviors of large-scale lithium ion batteries with different heating methods[J]. Journal of Hazardous Materials, 2019, 379: 120730. DOI:10.1016/j.jhazmat.2019.06.007.
|
7 |
HUANG Z H, ZHAO C P, LI H, et al. Experimental study on thermal runaway and its propagation in the large format lithium ion battery module with two electrical connection modes[J]. Energy, 2020, 205: 117906. DOI:10.1016/j.energy.2020.117906.
|
8 |
HUANG Z H, SHEN T, JIN K Q, et al. Heating power effect on the thermal runaway characteristics of large-format lithium ion battery with Li(Ni1/3Co1/3Mn1/3)O2 as cathode[J]. Energy, 2022, 239: 121885. DOI:10.1016/j.energy.2021.121885.
|
9 |
LIU P J, LIU C Q, YANG K, et al. Thermal runaway and fire behaviors of lithium iron phosphate battery induced by over heating[J]. Journal of Energy Storage, 2020, 31: 101714. DOI:10. 1016/j.est.2020.101714.
|
10 |
LIU P J, LI Y Q, MAO B B, et al. Experimental study on thermal runaway and fire behaviors of large format lithium iron phosphate battery[J]. Applied Thermal Engineering, 2021, 192: 116949. DOI:10.1016/j.applthermaleng.2021.116949.
|
11 |
LIU P J, SUN H L, QIAO Y T, et al. Experimental study on the thermal runaway and fire behavior of LiNi0.8Co0.1Mn0.1O2 battery in open and confined spaces[J]. Process Safety and Environmental Protection, 2022, 158: 711-726. DOI:10.1016/j.psep.2021.12.056.
|
12 |
TANG X, ZHANG G X, WANG X Y, et al. Investigating the critical characteristics of thermal runaway process for LiFePO4/graphite batteries by a ceased segmented method[J]. iScience, 2021, 24(10): 103088. DOI:10.1016/j.isci.2021.103088.
|
13 |
BAIRD A R, ARCHIBALD E J, MARR K C, et al. Explosion hazards from lithium-ion battery vent gas[J]. Journal of Power Sources, 2020, 446: 227257. DOI:10.1016/j.jpowsour. 2019. 227257.
|
14 |
LI J H, HUANG Z H. Fire and explosion risk analysis and evaluation for LNG ships[J]. Procedia Engineering, 2012, 45: 70-76. DOI:10.1016/j.proeng.2012.08.123.
|
15 |
RAJ P K. A review of the criteria for people exposure to radiant heat flux from fires[J]. Journal of Hazardous Materials, 2008, 159(1): 61-71. DOI:10.1016/j.jhazmat.2007.09.120.
|
16 |
国家质量监督检验检疫总局, 中国国家标准化管理委员会. 混合气体的分类第1部分: 毒性分类: GB/T 34710.1—2017[S]. 北京: 中国标准出版社.
|
|
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Classification of the mixture gas: Part 1: Toxic classification: GB/T 34710.1—2017[S]. Beijing: Standards Press of China.
|
17 |
刘秀秀, 许淑惠, 王策, 等. 灭火剂在封闭空间灭火中的烟气毒性评价[J]. 消防科学与技术, 2017, 36(2): 227-230. DOI: 10.3969/j.issn.1009-0029.2017.02.024.
|
|
LIU X X, XU S H, WANG C, et al. Toxicity evaluation on smoke generated by fire extinguishing agent in enclosed space[J]. Fire Science and Technology, 2017, 36(2): 227-230. DOI: 10.3969/j.issn.1009-0029.2017.02.024.
|
18 |
ZHANG Q S, LIU T T, HAO C L, et al. In situ Raman investigation on gas components and explosion risk of thermal runaway emission from lithium-ion battery[J]. Journal of Energy Storage, 2022, 56: 105905. DOI:10.1016/j.est.2022.105905.
|
19 |
韦善阳, 王川, 胡庆革. 油罐泄漏爆炸影响范围研究[J]. 消防科学与技术, 2015, 34(1): 22-25. DOI: 10.3969/j.issn.1009-0029. 2015. 01.007.
|
|
WEI S Y, WANG C, HU Q G. Study on influence range of oil tank explosion[J]. Fire Science and Technology, 2015, 34(1): 22-25. DOI: 10.3969/j.issn.1009-0029.2015.01.007.
|
20 |
WANG T Z, HUANG T, HU S, et al. Simulation and risk assessment of hydrogen leakage in hydrogen production container[J]. International Journal of Hydrogen Energy, 2023, 48(52): 20096-20111. DOI:10.1016/j.ijhydene.2023.02.038.
|