储能科学与技术 ›› 2025, Vol. 14 ›› Issue (1): 104-123.doi: 10.19799/j.cnki.2095-4239.2024.0579
收稿日期:
2024-06-27
修回日期:
2024-08-12
出版日期:
2025-01-28
发布日期:
2025-02-25
通讯作者:
钱利勤
E-mail:zwenjing202206@163.com;lqqian@tongji.edu.cn
作者简介:
张文婧(1999—),女,硕士研究生,主要从事液态锂离子电池安全性研究,E-mail:zwenjing202206@163.com;
基金资助:
Wenjing ZHANG(), Wei XIAO, Yahui YI, Liqin QIAN(
)
Received:
2024-06-27
Revised:
2024-08-12
Online:
2025-01-28
Published:
2025-02-25
Contact:
Liqin QIAN
E-mail:zwenjing202206@163.com;lqqian@tongji.edu.cn
摘要:
锂离子电池具有高比能、长循环寿命、高功率和低环境污染等优点,在新能源汽车、航空及储能等领域运用广泛。然而,随着锂离子电池能量密度的提升,电池的安全问题也愈发严重,引起人们广泛关注。因此,为了缓解锂离子电池的热失控,提高安全性,研究人员从不同方面提出缓解策略。本文回顾了近年来锂离子电池热失控机理以及从电池材料层面出发进行优化改进以减缓热失控程度的相关文章,首先综述了热失控触发的潜在机制以及不同阶段的反应,包括固体电解质分解、负极和电解质反应、电解质分解及正负极间氧化还原反应等,进而产生大量热以及可燃性气体。其次,基于热失控触发机理,总结了材料层面的改进措施和存在缺陷,如使用复合集流体、添加阻燃剂或自毁剂、使用高安全电解液和多功能性隔膜等,同时也概述了研发高安全电池存在的一些阻碍,如提高安全性的同时会伴随电性能降低等。目的是更好地理解锂离子电池热失控触发机理和提高电池安全的策略,为未来研究人员设计出安全性更高的锂离子电池提供方向,促进锂离子电池发展。
中图分类号:
张文婧, 肖伟, 伊亚辉, 钱利勤. 锂离子电池安全改性策略研究进展[J]. 储能科学与技术, 2025, 14(1): 104-123.
Wenjing ZHANG, Wei XIAO, Yahui YI, Liqin QIAN. Progress on safety modification strategies for lithium-ion batteries[J]. Energy Storage Science and Technology, 2025, 14(1): 104-123.
1 | GOODENOUGH J B, KIM Y. ChemInform abstract: Challenges for rechargeable Li batteries[J]. ChemInform, 2010, 41(31). DOI: 10.1002/chin.201031217. |
2 | ZAGHIB K, DONTIGNY M, GUERFI A, et al. Safe and fast-charging Li-ion battery with long shelf life for power applications[J]. Journal of Power Sources, 2011, 196(8): 3949-3954. DOI: 10. 1016/j. jpowsour. 2010. 11. 093. |
3 | YOO H D, MARKEVICH E, SALITRA G, et al. On the challenge of developing advanced technologies for electrochemical energy storage and conversion[J]. Materials Today, 2014, 17(3): 110-121. DOI: 10.1016/j.mattod.2014.02.014. |
4 | LISBONA D, SNEE T. A review of hazards associated with primary lithium and lithium-ion batteries[J]. Process Safety and Environmental Protection, 2011, 89(6): 434-442. DOI: 10.1016/j.psep.2011.06.022. |
5 | ARORA S, SHEN W X, KAPOOR A. Review of mechanical design and strategic placement technique of a robust battery pack for electric vehicles[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 1319-1331. DOI: 10.1016/j.rser.2016.03.013. |
6 | SHIAU C S N, SAMARAS C, HAUFFE R, et al. Impact of battery weight and charging patterns on the economic and environmental benefits of plug-in hybrid vehicles[J]. Energy Policy, 2009, 37(7): 2653-2663. DOI: 10.1016/j.enpol.2009.02.040. |
7 | GAO Z H, SUN H B, FU L, et al. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries [J]. Advanced Materials, 2018, 30(17): 1705702. DOI: 10.1002/adma.20 1705702. |
8 | RIEGER B, SCHLUETER S, ERHARD S V, et al. Multi-scale investigation of thickness changes in a commercial pouch type lithium-ion battery[J]. Journal of Energy Storage, 2016, 6: 213-221. DOI: 10.1016/j.est.2016.01.006. |
9 | CHOI J W, AURBACH D. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nature Reviews Materials, 2016, 1(4): 16013. DOI: 10.1038/natrevmats.2016.13. |
10 | CHU S, CUI Y, LIU N. The path towards sustainable energy[J]. Nature Materials, 2016, 16(1): 16-22. DOI: 10.1038/nmat4834. |
11 | SUN Y M, LIU N, CUI Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries[J]. Nature Energy, 2016, 1(7): 16071. DOI: 10.1038/nenergy.2016.71. |
12 | YANG Y, ZHENG G Y, CUI Y. Nanostructured sulfur cathodes[J]. Chemical Society Reviews, 2013, 42(7): 3018-3032. DOI: 10. 1039/c2cs35256g. |
13 | LU L G, HAN X B, LI J Q, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226: 272-288. DOI: 10.1016/j.jpowsour. 2012.10.060. |
14 | WANG M, YAO W T, ZOU P C, et al. Battery-on-Separator: A platform technology for arbitrary-shaped lithium ion batteries for high energy density storage[J]. Journal of Power Sources, 2021, 490: 229527. DOI: 10.1016/j.jpowsour.2021.229527. |
15 | LIU X X, CHAO D L, SU D P, et al. Graphene nanowires anchored to 3D graphene foam via self-assembly for high performance Li and Na ion storage[J]. Nano Energy, 2017, 37: 108-117. DOI: 10.1016/j.nanoen.2017.04.051. |
16 | 韩啸, 张成锟, 吴华龙, 等. 锂离子电池的工作原理与关键材料[J]. 金属功能材料, 2021, 28(2): 37-58. DOI: 10.13228/j.boyuan.issn1005-8192.20210001. |
HAN X, ZHANG C K, WU H L, et al. Working mechanism and key materials of the lithium ion batteries[J]. Metallic Functional Materials, 2021, 28(2): 37-58. DOI: 10.13228/j.boyuan.issn1005-8192.20210001. | |
17 | 孙淑婷. 锂离子电池三元正极材料LiNi0.6Co0.2Mn0.2O2的制备与改性[D]. 天津: 天津大学, 2015. |
SUN S T. Preparation and modification of ternary cathode material LiNi0.6Co0.2Mn0.2O2 for lithium ion batteries[D]. Tianjin: Tianjin University, 2015. | |
18 | SUN Y K, CHEN Z H, NOH H J, et al. Nanostructured high-energy cathode materials for advanced lithium batteries[J]. Nature Materials, 2012, 11(11): 942-947. DOI: 10.1038/nmat3435. |
19 | LI J, ZHANG Z R, GUO X J, et al. The studies on structural and thermal properties of delithiated LixNi1/3Co1/3Mn1/3O2 (0<x≤1) as a cathode material in lithium ion batteries[J]. Solid State Ionics, 2006, 177(17/18): 1509-1516. DOI: 10.1016/j.ssi.2006.03.055. |
20 | YU W Q, LI C C, LI Y Y, et al. Research progress on lithium-rich cathode materials for high energy density lithium-ion batteries[J]. Journal of Alloys and Compounds, 2024, 986: 174156. DOI: 10.1016/j.jallcom.2024.174156. |
21 | LU K J, ZHAO C S, JIANG Y F. Research progress of cathode materials for lithium-ion batteries[J]. E3S Web of Conferences, 2021, 233: 01020. DOI: 10.1051/e3sconf/202123301020. |
22 | BALAKRISHNAN P G, RAMESH R, PREM KUMAR T. Safety mechanisms in lithium-ion batteries[J]. Journal of Power Sources, 2006, 155(2): 401-414. DOI: 10.1016/j.jpowsour.2005.12.002. |
23 | WEN J W, YU Y, CHEN C H. A review on lithium-ion batteries safety issues: Existing problems and possible solutions[J]. Materials Express, 2012, 2(3): 197-212. DOI: 10.1166/mex. 2012.1075. |
24 | WANG Q S, PING P, ZHAO X J, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208: 210-224. DOI: 10.1016/j.jpowsour. 2012. 02.038. |
25 | DOUGHTY H D, ROTH P E. A general discussion of Li ion battery safety[J]. Electrochemical Society Interface, 2012: 37. DOI: 10.1149/2.f03122if. |
26 | LIU K, LIU Y Y, LIN D C, et al. Materials for lithium-ion battery safety[J]. Science Advances, 2018, 4(6): eaas9820. DOI: 10. 1126/sciadv.aas9820. |
27 | FENG X N, FANG M, HE X M, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry[J]. Journal of Power Sources, 2014, 255: 294-301. DOI: 10.1016/j.jpowsour.2014.01.005. |
28 | FENG X N, HE X M, OUYANG M G, et al. Thermal runaway propagation model for designing a safer battery pack with 25 Ah LiNixCoyMnzO2 large format lithium ion battery[J]. Applied Energy, 2015, 154: 74-91. DOI: 10.1016/j.apenergy.2015.04.118. |
29 | WANG Q S, HUANG P F, PING P, et al. Combustion behavior of lithium iron phosphate battery induced by external heat radiation[J]. Journal of Loss Prevention in the Process Industries, 2017, 49: 961-969. DOI: 10.1016/j.jlp.2016.12.002. |
30 | FENG X N, ZHENG S Q, REN D S, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy, 2019, 246: 53-64. DOI: 10.1016/j.apenergy.2019.04.009. |
31 | FENG X N, ZHENG S Q, REN D S, et al. Key characteristics for thermal runaway of Li-ion batteries[J]. Energy Procedia, 2019, 158: 4684-4689. DOI: 10.1016/j.egypro.2019.01.736. |
32 | FENG X N, REN D S, HE X M, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770. DOI: 10.1016/j.joule.2020.02.010. |
33 | FENG X N, ZHENG S Q, HE X M, et al. Time sequence map for interpreting the thermal runaway mechanism of lithium-ion batteries with LiNixCoyMnzO2 cathode[J]. Frontiers in Energy Research, 2018, 6: 126. DOI: 10.3389/fenrg.2018.00126. |
34 | LARSSON F, BERTILSSON S, FURLANI M, et al. Gas explosions and thermal runaways during external heating abuse of commercial lithium-ion graphite-LiCoO2 cells at different levels of ageing[J]. Journal of Power Sources, 2018, 373: 220-231. DOI: 10.1016/j.jpowsour.2017.10.085. |
35 | KALHOFF J, ESHETU G G, BRESSER D, et al. Safer electrolytes for lithium-ion batteries: State of the art and perspectives[J]. ChemSusChem, 2015, 8(13): 2154-2175. DOI: 10.1002/cssc.201500284. |
36 | KUMAI K, MIYASHIRO H, KOBAYASHI Y, et al. Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell[J]. Journal of Power Sources, 1999, 81: 715-719. DOI: 10.1016/S0378-7753(98)00234-1. |
37 | FENG X N, SUN J, OUYANG M G, et al. Characterization of large format lithium ion battery exposed to extremely high temperature[J]. Journal of Power Sources, 2014, 272: 457-467. DOI: 10.1016/j.jpowsour.2014.08.094. |
38 | YU S Y, MAO Y, XIE J Y, et al. Thermal runaway chain reaction determination and mechanism model establishment of NCA-graphite battery based on the internal temperature[J]. Applied Energy, 2024, 353: 122097. DOI: 10.1016/j.apenergy. 2023. 122097. |
39 | ARORA P, ZHANG Z J. Battery separators[J]. Chemical Reviews, 2004, 104(10): 4419-4462. DOI: 10.1021/cr020738u. |
40 | FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267. DOI: 10.1016/j.ensm.2017.05.013. |
41 | LIU X, REN D S, HSU H, et al. Thermal runaway of lithium-ion batteries without internal short circuit[J]. Joule, 2018, 2(10): 2047-2064. DOI: 10.1016/j.joule.2018.06.015. |
42 | BAK S M, NAM K W, CHANG W, et al. Correlating structural changes and gas evolution during the thermal decomposition of charged LixNi0.8Co0.15Al0.05O2 cathode materials[J]. Chemistry of Materials, 2013, 25(3): 337-351. DOI: 10.1021/cm303096e. |
43 | BAK S M, HU E Y, ZHOU Y N, et al. Structural changes and thermal stability of charged LiNixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy[J]. ACS Applied Materials & Interfaces, 2014, 6(24): 22594-22601. DOI: 10.1021/am506712c. |
44 | LI Y, LIU X, WANG L, et al. Thermal runaway mechanism of lithium-ion battery with LiNi0.8Mn0.1Co0.1O2 cathode materials[J]. Nano Energy, 2021, 85: 105878. DOI: 10.1016/j.nanoen. 2021. 105878. |
45 | REN D S, FENG X N, LIU L S, et al. Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition[J]. Energy Storage Materials, 2021, 34: 563-573. DOI: 10.1016/j.ensm.2020.10.020. |
46 | LI Y, SONG J, YANG J. A review on structure model and energy system design of lithium-ion battery in renewable energy vehicle[J]. Renewable and Sustainable Energy Reviews, 2014, 37: 627-633. DOI: 10.1016/j.rser.2014.05.059. |
47 | SHARIFI-ASL S, LU J, AMINE K, et al. Oxygen release degradation in Li-ion battery cathode materials: Mechanisms and mitigating approaches[J]. Advanced Energy Materials, 2019, 9(22): 1900551. DOI: 10.1002/aenm.201900551. |
48 | CHEN S Y, GAO Z H, SUN T J. Safety challenges and safety measures of Li-ion batteries[J]. Energy Science & Engineering, 2021, 9(9): 1647-1672. DOI: 10.1002/ese3.895. |
49 | WHITTINGHAM M S. Lithium batteries and cathode materials[J]. Chemical Reviews, 2004, 104(10): 4271-4301. DOI: 10. 1021/cr020731c. |
50 | SUN Y K, MYUNG S T, PARK B C, et al. High-energy cathode material for long-life and safe lithium batteries[J]. Nature Materials, 2009, 8(4): 320-324. DOI: 10.1038/nmat2418. |
51 | VIDU R, STROEVE P. Improvement of the thermal stability of Li-ion batteries by polymer coating of LiMn2O4[J]. Industrial & Engineering Chemistry Research, 2004, 43(13): 3314-3324. DOI: 10.1021/ie034085z. |
52 | TAKAMI N, OHSAKI T, HASEBE H, et al. Laminated thin Li-ion batteries using a liquid electrolyte[J]. Journal of the Electrochemical Society, 2002, 149(1): A9. DOI: 10.1149/1. 1420704. |
53 | XIA L, LI S L, AI X P, et al. Temperature-sensitive cathode materials for safer lithium-ion batteries[J]. Energy & Environmental Science, 2011, 4(8): 2845-2848. DOI: 10.1039/C0EE00590H. |
54 | NAGUIB M, ALLU S, SIMUNOVIC S, et al. Limiting internal short-circuit damage by electrode partition for impact-tolerant Li-ion batteries[J]. Joule, 2018, 2(1): 155-167. DOI: 10.1016/j.joule. 2017. 11.003. |
55 | DING F, XU W, CHOI D, et al. Enhanced performance of graphite anode materials by AlF3 coating for lithium-ion batteries[J]. Journal of Materials Chemistry, 2012, 22(25): 12745-12751. DOI: 10.1039/C2JM31015E. |
56 | LEE M L, LI Y H, LIAO S C, et al. Li4Ti5O12-coated graphite as an anode material for lithium-ion batteries[J]. Applied Surface Science, 2012, 258(16): 5938-5942. DOI: 10.1016/j.apsusc. 2011.11.018. |
57 | EOM J Y, CHO Y H, KIM S I, et al. Improvements in the electrochemical performance of Li4Ti5O12-coated graphite anode materials for lithium-ion batteries by simple ball-milling[J]. Journal of Alloys and Compounds, 2017, 723: 456-461. DOI: 10.1016/j.jallcom.2017.06.210. |
58 | ZHANG H Y, CHEN Y T, LI J, et al. Li4Ti5O12/CNTs composite anode material for large capacity and high-rate lithium ion batteries[J]. International Journal of Hydrogen Energy, 2014, 39(28): 16096-16102. DOI: 10.1016/j.ijhydene.2014.01.139. |
59 | REN B, LI W, WEI A J, et al. Boron and nitrogen co-doped CNT/Li4Ti5O12 composite for the improved high-rate electrochemical performance of lithium-ion batteries[J]. Journal of Alloys and Compounds, 2018, 740: 784-789. DOI: 10.1016/j.jallcom. 2017.12.167. |
60 | NOBILI F, DSOKE S, MECOZZI T, et al. Metal-oxidized graphite composite electrodes for lithium-ion batteries[J]. Electrochimica Acta, 2005, 51(3): 536-544. DOI: 10.1016/j.electacta. 2005. 05.012. |
61 | ZHANG W H. Calculation model of edge carbon atoms in graphite particles for anode of lithium-ion batteries[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(11): 2466-2475. DOI: 10.1016/S1003-6326(11)61038-8. |
62 | ZHANG H L, LIU S H, LI F, et al. Electrochemical performance of pyrolytic carbon-coated natural graphite spheres[J]. Carbon, 2006, 44(11): 2212-2218. DOI: 10.1016/j.carbon.2006.02.037. |
63 | PARK J S, LEE M H, JEON I Y, et al. Edge-exfoliated graphites for facile kinetics of delithiation[J]. ACS Nano, 2012, 6(12): 10770-10775. DOI: 10.1021/nn3050227. |
64 | LIN Y X, HUANG Z H, YU X L, et al. Mildly expanded graphite for anode materials of lithium ion battery synthesized with perchloric acid[J]. Electrochimica Acta, 2014, 116: 170-174. DOI: 10.1016/j.electacta.2013.11.057. |
65 | KIM T H, JEON E K, KO Y, et al. Enlarging the d-spacing of graphite and polarizing its surface charge for driving lithium ions fast[J]. Journal of Materials Chemistry A, 2014, 2(20): 7600-7605. DOI: 10.1039/C3TA15360F. |
66 | GALLEGO N C, CONTESCU C I, MEYER H M, et al. Advanced surface and microstructural characterization of natural graphite anodes for lithium ion batteries[J]. Carbon, 2014, 72: 393-401. DOI: 10.1016/j.carbon.2014.02.031. |
67 | BRUCE P G, SCROSATI B, TARASCON J M. Nanomaterials for rechargeable lithium batteries[J]. Angewandte Chemie International Editon, 2008, 47(16): 2930-2946. DOI: 10.1002/anie.200702505. |
68 | CHOUDHURY R, WILD J, YANG Y. Engineering current collectors for batteries with high specific energy[J]. Joule, 2021, 5(6): 1301-1305. DOI: 10.1016/j.joule.2021.03.027. |
69 | MALEKI H, AL HALLAJ S, SELMAN J R, et al. Thermal properties of lithium-ion battery and components[J]. Journal of the Electrochemical Society, 1999, 146(3): 947-954. DOI: 10. 1149/1.1391704. |
70 | JEONG H, JANG J, JO C. A review on current collector coating methods for next-generation batteries[J]. Chemical Engineering Journal, 2022, 446: 136860. DOI: 10.1016/j.cej.2022.136860. |
71 | ZHU P C, GASTOL D, MARSHALL J, et al. A review of current collectors for lithium-ion batteries[J]. Journal of Power Sources, 2021, 485: 229321. DOI: 10.1016/j.jpowsour.2020.229321. |
72 | YAZICI M S, KRASSOWSKI D, PRAKASH J. Flexible graphite as battery anode and current collector[J]. Journal of Power Sources, 2005, 141(1): 171-176. DOI: 10.1016/j.jpowsour.2004.09.009. |
73 | WANG L, HE X M, LI J J, et al. Graphene-coated plastic film as current collector for lithium/sulfur batteries[J]. Journal of Power Sources, 2013, 239: 623-627. DOI: 10.1016/j.jpowsour. 2013. 02.008. |
74 | ZHANG Z G, SONG Y Z, ZHANG B, et al. Metallized plastic foils: A promising solution for high-energy lithium-ion battery current collectors[J]. Advanced Energy Materials, 2023, 13(36): 2302134. DOI: 10.1002/aenm.202302134. |
75 | YUN J H, HAN G B, LEE Y M, et al. Low resistance flexible current collector for lithium secondary battery[J]. Electrochemical and Solid-State Letters, 2011, 14(8): A116-A119. DOI: 10.1149/1.3596721. |
76 | JUNG M S, SEO J H, MOON M W, et al. A bendable Li-ion battery with a nano-hairy electrode: Direct integration scheme on the polymer substrate[J]. Advanced Energy Materials, 2015, 5(1): 1400611. DOI: 10.1002/aenm.201400611. |
77 | YE Y S, CHOU L Y, LIU Y Y, et al. Ultralight and fire-extinguishing current collectors for high-energy and high-safety lithium-ion batteries[J]. Nature Energy, 2020, 5: 786-793. DOI: 10.1038/s41560-020-00702-8. |
78 | PHAM M T M, DARST J J, WALKER W Q, et al. Prevention of lithium-ion battery thermal runaway using polymer-substrate current collectors[J]. Cell Reports Physical Science, 2021, 2(3): 100360. DOI: 10.1016/j.xcrp.2021.100360. |
79 | LIU Z K, DONG Y H, QI X Q, et al. Stretchable separator/current collector composite for superior battery safety[J]. Energy & Environmental Science, 2022, 15(12): 5313-5323. DOI: 10.1039/D2EE01793H. |
80 | 汪茹, 刘志康, 严超, 等. 高安全锂离子电池复合集流体的界面强化[J]. 物理化学学报, 2023, 39(2): 87-98. DOI: 10.3866/PKU.WHXB202203043. |
WANG R, LIU Z K, YAN C, et al. Interface strengthening of composite current collectors for high-safety lithium-ion batteries[J]. Acta Physico-Chimica Sinica, 2023, 39(2): 87-98. DOI: 10.3866/PKU.WHXB202203043. | |
81 | WU X X, CHEN S J, LIU D N, et al. Polymer@Cu composite foils with through-hole arrays as lightweight and flexible current collectors for lithium-ion batteries[J]. Journal of Energy Storage, 2023, 74: 109208. DOI: 10.1016/j.est.2023.109208. |
82 | 彭勇, 冯旭宁. 自毁电池研究进展[J]. 工程热物理学报, 2023, 44(8): 2052-2058. |
PENG Y, FENG X N. The progress in self-destruct battery research[J]. Journal of Engineering Thermophysics, 2023, 44(8): 2052-2058. | |
83 | 徐鹏, 孙俊民, 刘忠, 等. 水合硫酸铝加热脱除结晶水的过程动力学机理[J]. 轻金属, 2016(8): 17-21. DOI: 10.13662/j.cnki.qjs.2016.08.005. |
XU P, SUN J M, LIU Z, et al. Kinetic mechanism of heating hydrazine aluminum sulfate dehydration[J]. Light Metals, 2016(8): 17-21. DOI: 10.13662/j.cnki.qjs.2016.08.005. | |
84 | PENG Y, FENG X N, XIA J Z, et al. Polymer based multi-layer Al composite current collector improves battery safety[J]. Chemical Engineering Journal, 2024, 491: 151474. DOI: 10.1016/j.cej.2024.151474. |
85 | HARRIS SJ, LU P. Effects of inhomogeneities-nanoscale to mesoscale-on the durability of Li-ion batteries[J]. The Journal of Physical Chemistry C. 2013, 117(13): 6481-6492. |
86 | BESENHARD J O, WAGNER M W, WINTER M, et al. Inorganic film-forming electrolyte additives improving the cycling behaviour of metallic lithium electrodes and the self-discharge of carbon-lithium electrodes[J]. Journal of Power Sources, 1993, 44(1/2/3): 413-420. DOI: 10.1016/0378-7753(93)80183-P. |
87 | KOMABA S, KAPLAN B, OHTSUKA T, et al. Inorganic electrolyte additives to suppress the degradation of graphite anodes by dissolved Mn(Ⅱ) for lithium-ion batteries[J]. Journal of Power Sources, 2003, 119: 378-382. DOI: 10.1016/S0378-7753(03)00224-6. |
88 | AURBACH D, GAMOLSKY K, MARKOVSKY B, et al. On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries[J]. Electrochimica Acta, 2002, 47(9): 1423-1439. DOI: 10.1016/S0013-4686(01)00858-1. |
89 | WANG F M, CHENG H M, WU H C, et al. Novel SEI formation of maleimide-based additives and its improvement of capability and cyclicability in lithium ion batteries[J]. Electrochimica Acta, 2009, 54(12): 3344-3351. DOI: 10.1016/j.electacta.2008.12.032. |
90 | MATSUO Y, FUMITA K, FUKUTSUKA T, et al. Butyrolactone derivatives as electrolyte additives for lithium-ion batteries with graphite anodes[J]. Journal of Power Sources, 2003, 119: 373-377. DOI: 10.1016/S0378-7753(03)00271-4. |
91 | MCMILLAN R, SLEGR H, SHU Z X, et al. Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes[J]. Journal of Power Sources, 1999, 81: 20-26. DOI: 10.1016/S0378-7753(98)00201-8. |
92 | ZAGHIB K, DUBÉ J, DALLAIRE A, et al. Lithium-ion cell components and their effect on high-power battery safety[M]// Lithium-Ion Batteries. Amsterdam: Elsevier, 2014: 437-460. DOI: 10.1016/b978-0-444-59513-3.00019-4. |
93 | DING J, TIAN T F, MENG Q, et al. Smart multifunctional fluids for lithium ion batteries: Enhanced rate performance and intrinsic mechanical protection[J]. Scientific Reports, 2013, 3: 2485. DOI: 10.1038/srep02485. |
94 | WANG X M, YASUKAWA E, KASUYA S. Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries: I. Fundamental properties[J]. Journal of the Electrochemical Society, 2001, 148(10): A1058. DOI: 10.1149/1.1397773. |
95 | HYUNG Y E, VISSERS D R, AMINE K. Flame-retardant additives for lithium-ion batteries[J]. Journal of Power Sources, 2003, 119: 383-387. DOI: 10.1016/S0378-7753(03)00225-8. |
96 | PIRES J, CASTETS A, TIMPERMAN L, et al. Tris(2,2,2-trifluoroethyl) phosphite as an electrolyte additive for high-voltage lithium-ion batteries using lithium-rich layered oxide cathode[J]. Journal of Power Sources, 2015, 296: 413-425. DOI: 10.1016/j.jpowsour.2015.07.065. |
97 | DENG K R, ZENG Q G, WANG D, et al. Nonflammable organic electrolytes for high-safety lithium-ion batteries[J]. Energy Storage Materials, 2020, 32: 425-447. DOI: 10.1016/j.ensm. 2020.07.018. |
98 | ZHU D D, REN Y B, YU Y X, et al. Flame-retardant additive/co-solvent contained in organic solution for safe second batteries: A review[J]. ChemElectroChem, 2023, 10(8). DOI: 10.1002/celc. 202300009. |
99 | DAGGER T, GRÜTZKE M, REICHERT M, et al. Investigation of lithium ion battery electrolytes containing flame retardants in combination with the film forming electrolyte additives vinylene carbonate, vinyl ethylene carbonate and fluoroethylene carbonate[J]. Journal of Power Sources, 2017, 372: 276-285. DOI: 10.1016/j.jpowsour.2017.10.058. |
100 | WANG J H, YAMADA Y, SODEYAMA K, et al. Fire-extinguishing organic electrolytes for safe batteries[J]. Nature Energy, 2018, 3: 22-29. DOI: 10.1038/s41560-017-0033-8. |
101 | CHAWLA N, BHARTI N, SINGH S. Recent advances in non-flammable electrolytes for safer lithium-ion batteries[J]. Batteries, 2019, 5(1): 19. DOI: 10.3390/batteries5010019. |
102 | DENG K R, XU Z L, ZHOU S P, et al. Nonflammable highly-fluorinated polymer electrolytes with enhanced interfacial compatibility for dendrite-free lithium metal batteries[J]. Journal of Power Sources, 2021, 510: 230411. DOI: 10.1016/j.jpowsour.2021.230411. |
103 | AURBACH D, EIN-ELI Y, MARKOVSKY B, et al. The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries: Ⅱ. Graphite electrodes[J]. Journal of the Electrochemical Society, 1995, 142(9): 2882-2890. DOI: 10.1149/1.2048659. |
104 | YAMADA Y, USUI K, CHIANG C H, et al. General observation of lithium intercalation into graphite in ethylene-carbonate-free superconcentrated electrolytes[J]. ACS Applied Materials & Interfaces, 2014, 6(14): 10892-10899. DOI: 10.1021/am5001163. |
105 | WU Y, REN D S, LIU X, et al. High-voltage and high-safety practical lithium batteries with ethylene carbonate-free electrolyte[J]. Advanced Energy Materials, 2021, 11(47): 2102299. DOI: 10.1002/aenm.202102299. |
106 | WANG Z X, SUN J Q, LIU R, et al. Thin solid polymer electrolyte with high-strength and thermal-resistant via incorporating nanofibrous polyimide framework for stable lithium batteries[J]. Small, 2023, 19(47): e2303422. DOI: 10.1002/smll.202303422. |
107 | WU J Y, RAO Z X, CHENG Z X, et al. Ultrathin, flexible polymer electrolyte for cost-effective fabrication of all-solid-state lithium metal batteries[J]. Advanced Energy Materials, 2019, 9(46): 1902767. DOI: 10.1002/aenm.201902767. |
108 | CUI Y, WAN J Y, YE Y S, et al. A fireproof, lightweight, polymer-polymer solid-state electrolyte for safe lithium batteries[J]. Nano Letters, 2020, 20(3): 1686-1692. DOI: 10.1021/acs.nanolett.9b04815. |
109 | MA Y X, WAN J Y, YANG Y F, et al. Scalable, ultrathin, and high-temperature-resistant solid polymer electrolytes for energy-dense lithium metal batteries[J]. Advanced Energy Materials, 2022, 12(15): 2103720. DOI: 10.1002/aenm.202103720. |
110 | LAGADEC M F, ZAHN R, WOOD V. Characterization and performance evaluation of lithium-ion battery separators[J]. Nature Energy, 2019, 4: 16-25. DOI: 10.1038/s41560-018-0295-9. |
111 | LEE H, YANILMAZ M, TOPRAKCI O, et al. A review of recent developments in membrane separators for rechargeable lithium-ion batteries[J]. Energy & Environmental Science, 2014, 7(12): 3857-3886. DOI: 10.1039/C4EE01432D. |
112 | LIU K, ZHUO D, LEE H W, et al. Extending the life of lithium-based rechargeable batteries by reaction of lithium dendrites with a novel silica nanoparticle sandwiched separator[J]. Advanced Materials, 2017, 29(4): 1603987. DOI: 10.1002/adma.201603987. |
113 | CHOU L Y, YE Y S, LEE H K, et al. Electrolyte-resistant dual materials for the synergistic safety enhancement of lithium-ion batteries[J]. Nano Letters, 2021, 21(5): 2074-2080. DOI: 10.1021/acs.nanolett.0c04568. |
114 | LIU Z F, PENG Y T, MENG T, et al. Thermal-triggered fire-extinguishing separators by phase change materials for high-safety lithium-ion batteries[J]. Energy Storage Materials, 2022, 47: 445-452. DOI: 10.1016/j.ensm.2022.02.020. |
115 | LI S L, XIA L, ZHANG H Y, et al. A poly(3-decyl thiophene)-modified separator with self-actuating overcharge protection mechanism for LiFePO4-based lithium ion battery[J]. Journal of Power Sources, 2011, 196(16): 7021-7024. DOI: 10.1016/j.jpowsour.2010.09.111. |
116 | WU H, ZHUO D, KONG D S, et al. Improving battery safety by early detection of internal shorting with a bifunctional separator[J]. Nature Communications, 2014, 5: 5193. DOI: 10.1038/ncomms6193. |
[1] | 曹巍, 陈飞, 孔祥栋, 朱志成, 韩雪冰, 卢兰光, 郑岳久. 锂离子电池极片涂布工艺研究进展[J]. 储能科学与技术, 2025, 14(1): 90-103. |
[2] | 张建茹, 王其钰, 李庆浩, 张献英, 王碧童, 禹习谦, 李泓. 锂离子电池失效分析中的几种物性表征技术及其应用[J]. 储能科学与技术, 2025, 14(1): 286-309. |
[3] | 邢远秀, 刘颛玮, 邢玉峰, 王文波. BDD-DETR:高效感知小目标的锂电池表面缺陷检测[J]. 储能科学与技术, 2025, 14(1): 370-379. |
[4] | 李建萱, 林琛, 周忠凯. 基于减平均优化算法与双向长短期记忆网络的锂离子电池健康状态估算[J]. 储能科学与技术, 2025, 14(1): 358-369. |
[5] | 叶石丰, 洪朝锋, 綦晓, 吴伟雄, 谭子健, 周奇, 张兆阳. 基于EEMD-GRU-NN锂离子电池表面温度预测方法研究[J]. 储能科学与技术, 2025, 14(1): 380-387. |
[6] | 刘通, 杨瑰婷, 毕辉, 梅悦旎, 刘硕, 宫勇吉, 罗文雷. 高能量密度与高功率密度兼顾型锂离子电池研究现状与展望[J]. 储能科学与技术, 2025, 14(1): 54-76. |
[7] | 李可, 朱顺兵, 陶致格, 王赫. 复合水系灭火剂抑制磷酸铁锂电池火灾实验[J]. 储能科学与技术, 2025, 14(1): 140-151. |
[8] | 刘勇, 于怀汶, 刘大鹏, 穆勇, 王瀛洲, 张秀宇. 基于ABC-LSTM模型的锂离子电池剩余使用寿命预测[J]. 储能科学与技术, 2025, 14(1): 331-345. |
[9] | 陈峥, 彭月, 胡竞元, 申江卫, 肖仁鑫, 夏雪磊. 基于短期充电数据和增强鲸鱼优化算法的锂离子电池容量预测[J]. 储能科学与技术, 2025, 14(1): 319-330. |
[10] | 梅悦旎, 屈雯洁, 程广玉, 向永贵, 陆海燕, 邵晓丹, 张益明, 王可. 锂离子电池正极补锂技术研究进展[J]. 储能科学与技术, 2025, 14(1): 77-89. |
[11] | 孙中麟, 李嘉波, 田迪, 王志璇, 邢晓静. 基于COA-LSTM和VMD的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2024, 13(9): 3254-3265. |
[12] | 陆继忠, 彭思敏, 李晓宇. 基于多特征量分析和LSTM-XGBoost模型的锂离子电池SOH估计方法[J]. 储能科学与技术, 2024, 13(9): 2972-2982. |
[13] | 胡雪峰, 常先雷, 刘肖肖, 徐威, 张文彬. 适用于宽温度范围的锂离子电池SOC估计方法[J]. 储能科学与技术, 2024, 13(9): 2983-2994. |
[14] | 沈思远, 刘亚坤, 罗栋煌, 李雨珺, 郝伟. 储能锂离子电池模组暂态过电压防护设计与电路研发[J]. 储能科学与技术, 2024, 13(9): 3277-3286. |
[15] | 陈媛, 章思源, 蔡宇晶, 黄小贺, 刘炎忠. 融合多项式特征扩展与CNN-Transformer模型的锂电池SOH估计[J]. 储能科学与技术, 2024, 13(9): 2995-3005. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||