储能科学与技术 ›› 2025, Vol. 14 ›› Issue (1): 104-123.doi: 10.19799/j.cnki.2095-4239.2024.0579

• 储能材料与器件 • 上一篇    下一篇

锂离子电池安全改性策略研究进展

张文婧(), 肖伟, 伊亚辉, 钱利勤()   

  1. 长江大学机械工程学院,湖北 荆州 434000
  • 收稿日期:2024-06-27 修回日期:2024-08-12 出版日期:2025-01-28 发布日期:2025-02-25
  • 通讯作者: 钱利勤 E-mail:zwenjing202206@163.com;lqqian@tongji.edu.cn
  • 作者简介:张文婧(1999—),女,硕士研究生,主要从事液态锂离子电池安全性研究,E-mail:zwenjing202206@163.com
  • 基金资助:
    国家自然科学基金(52204001);湖北省重点研发计划(2021BAA053);长江大学非常规油气省部共建协同创新中心开放基金(UOG2024-23)

Progress on safety modification strategies for lithium-ion batteries

Wenjing ZHANG(), Wei XIAO, Yahui YI, Liqin QIAN()   

  1. School of Mechanical Engineering, Yangtze University, Jingzhou 434000, Hubei, China
  • Received:2024-06-27 Revised:2024-08-12 Online:2025-01-28 Published:2025-02-25
  • Contact: Liqin QIAN E-mail:zwenjing202206@163.com;lqqian@tongji.edu.cn

摘要:

锂离子电池具有高比能、长循环寿命、高功率和低环境污染等优点,在新能源汽车、航空及储能等领域运用广泛。然而,随着锂离子电池能量密度的提升,电池的安全问题也愈发严重,引起人们广泛关注。因此,为了缓解锂离子电池的热失控,提高安全性,研究人员从不同方面提出缓解策略。本文回顾了近年来锂离子电池热失控机理以及从电池材料层面出发进行优化改进以减缓热失控程度的相关文章,首先综述了热失控触发的潜在机制以及不同阶段的反应,包括固体电解质分解、负极和电解质反应、电解质分解及正负极间氧化还原反应等,进而产生大量热以及可燃性气体。其次,基于热失控触发机理,总结了材料层面的改进措施和存在缺陷,如使用复合集流体、添加阻燃剂或自毁剂、使用高安全电解液和多功能性隔膜等,同时也概述了研发高安全电池存在的一些阻碍,如提高安全性的同时会伴随电性能降低等。目的是更好地理解锂离子电池热失控触发机理和提高电池安全的策略,为未来研究人员设计出安全性更高的锂离子电池提供方向,促进锂离子电池发展。

关键词: 锂离子电池, 热失控机制, 电池材料, 热安全

Abstract:

Lithium-ion batteries offer several advantages, including high specific energy, extended cycle life, high power output, and low environmental impact, making them widely used in applications such as new energy vehicles, aviation, and energy storage. However, as the energy density of lithium-ion batteries increases, safety concerns have become more pronounced, attracting significant attention. To address these challenges and enhance battery safety, researchers have explored various strategies to mitigate thermal runaway. This study reviews relevant articles on the thermal runaway mechanism of Li-ion batteries and the optimization and improvement of battery materials to reduce the degree of thermal runaway. First, the potential mechanism of thermal runaway triggering and various stages of reaction are reviewed, including solid electrolyte interface decomposition, negative electrode and electrolyte reaction, electrolyte decomposition, and positive and negative electrode redox reaction, which generate substantial heat and combustible gases. Second, based on the thermal runaway trigger mechanism, the improvement measures and defects at the material level are summarized, such as the use of metalized plastic current collector collectors, the addition of flame retardants or self-destructors, and the use of high-safety electrolyte and multi-functional separators. The challenges associated with the development of high-safety batteries, such as improving safety while accompanied by electrical performance reduction, are also outlined. The aim is to provide a better understanding of the thermal runaway triggering mechanism of lithium-ion batteries and strategies to improve battery safety, offering insights for future research focused on developing safer lithium-ion batteries and advancing the field.

Key words: lithium-ion battery, thermal runaway mechanism, battery material, thermal safety

中图分类号: