储能科学与技术 ›› 2025, Vol. 14 ›› Issue (1): 286-309.doi: 10.19799/j.cnki.2095-4239.2024.0570
张建茹1(), 王其钰1(
), 李庆浩2, 张献英1, 王碧童1, 禹习谦1, 李泓1
收稿日期:
2024-06-25
修回日期:
2024-07-22
出版日期:
2025-01-28
发布日期:
2025-02-25
通讯作者:
王其钰
E-mail:momsnow@foxmail.com;qywang10@iphy.ac.cn
作者简介:
张建茹(1996—),女,硕士,工程师,主要研究方向为表面分析技术,E-mail:momsnow@foxmail.com;
基金资助:
Jianru ZHANG1(), Qiyu WANG1(
), Qinghao LI2, Xianying ZHANG1, Bitong WANG1, Xiqian YU1, Hong LI1
Received:
2024-06-25
Revised:
2024-07-22
Online:
2025-01-28
Published:
2025-02-25
Contact:
Qiyu WANG
E-mail:momsnow@foxmail.com;qywang10@iphy.ac.cn
摘要:
锂离子电池失效分析是关乎电池研发、老化机制解析及电池梯次利用的重要课题,分析结果的准确性离不开对材料和器件性能参数的准确测试和表征。现有物性表征技术较多,相关测试项目、测试周期、样品制备以及设备普及性的不同导致其使用频率和应用场景有所差异。同时,越来越多的先进表征技术逐渐被应用到锂离子电池的表征分析及机理研究中来,如同步辐射技术、中子衍射、核磁共振等。本文介绍了锂离子电池失效分析中几种使用频率较高和功能较为前沿的物性表征技术,综述了不同技术在锂离子电池材料器件表征分析和失效机制研究中的应用案例,希望能够助力科研人员更好更快地选择合适的表征手段,为锂离子电池失效分析提供更直接有力的数据支撑。
中图分类号:
张建茹, 王其钰, 李庆浩, 张献英, 王碧童, 禹习谦, 李泓. 锂离子电池失效分析中的几种物性表征技术及其应用[J]. 储能科学与技术, 2025, 14(1): 286-309.
Jianru ZHANG, Qiyu WANG, Qinghao LI, Xianying ZHANG, Bitong WANG, Xiqian YU, Hong LI. Physical characterization techniques and applications in lithium battery failure analysis[J]. Energy Storage Science and Technology, 2025, 14(1): 286-309.
表1
材料测试表征技术在锂离子电池表征中的应用"
技术分类 | 技术名称 | 表征范围 | 对应研究内容 | 普适性 |
---|---|---|---|---|
形貌表征 | 扫描电子显微镜(SEM) | 极片、材料 | 常规极片/隔膜微观形貌变化 | ★★★★★ |
透射电子显微镜(TEM) | 材料 | 材料形貌、结构、元素变化 | ★★★★ | |
扫描探针显微镜(SPM) | 极片 | 形貌、表面功函数等变化 | ★★★ | |
光学成像/显微成像 | 电池、极片 | 形貌异常表征 | ★★★★★ | |
表面分析 | X射线光电子能谱(XPS) | 极片 | 表面SEI成分、厚度 | ★★★★ |
扫描探针显微镜(SPM) | 极片 | 表面力学、电学性能变化 | ★★★ | |
二次离子质谱(SIMS) | 极片 | 表面SEI成分、厚度 | ★★★ | |
俄歇电子能谱(AES) | 极片 | 表面成分、价态变化 | ★★ | |
结构表征 | X射线衍射(XRD) | 极片、材料 | 常规材料体相结构变化、相变 | ★★★★★ |
X射线吸收光谱(XAS) | 电池、极片、材料 | 材料体相、表面结构变化精细解析 | ★★ | |
拉曼光谱(Ranma) | 极片、材料 | 结构分析 | ★★★★ | |
核磁共振扫描(NMR) | 极片 | 析锂分析 | ★★ | |
中子衍射(ND) | 电池、极片、材料 | 无损分析、析锂分析 | ★ | |
成分分析 | 气相色谱(GC) | 电池产气 | 产气分析 | ★★★★ |
液相色谱(LC) | 电解液 | 电解液成分、杂质分析 | ★★★★ | |
离子色谱(IC) | 材料 | 氯离子含量分析 | ★★★ | |
质谱(MS) | 电解液、极片、材料 | 电解液成分分析、有机成分分析 | ★★★ | |
电感耦合等离子体(ICP) | 电解液、极片、材料 | 元素分析、杂质分析 | ★★★★★ | |
微分电化学质谱(DEMS) | 极片 | 产气机理分析 | ★★★ | |
红外光谱(IR) | 极片、材料、隔膜、电解液 | 官能团、分子结构 | ★★★★ | |
无损检测 | 微米CT | 电池、极片 | 电池内部结构形变 | ★★★ |
纳米CT | 材料、极片 | 材料内部变化 | ★★ | |
超声检测(UT) | 电池、极片 | 电池内部产气、析锂 | ★★ |
1 | 王其钰, 王朔, 张杰男, 等. 锂离子电池失效分析概述[J]. 储能科学与技术, 2017, 6(5): 1008-1025. DOI: 10.12028/j.issn.2095-4239. 2017.0043. |
WANG Q Y, WANG S, ZHANG J N, et al. Overview of the failure analysis of lithium ion batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 1008-1025. DOI: 10.12028/j.issn.2095-4239.2017.0043. | |
2 | LIU D Q, SHADIKE Z, LIN R Q, et al. Review of recent development of in situ/operando characterization techniques for lithium battery research[J]. Advanced Materials, 2019, 31(28): e1806620. DOI: 10.1002/adma.201806620. |
3 | 李文俊, 郑杰允, 谷林, 等. 锂电池原位与非原位表征技术研究[J]. 电化学, 2015, 21(2): 99-114. DOI: 10.13208/j.electrochem.141054. |
LI W J, ZHENG J Y, GU L, et al. Researches on in situ and ex-situ characterization techniques in lithium batteries[J]. Journal of Electrochemistry, 2015, 21(2): 99-114. DOI: 10.13208/j.electrochem.141054. | |
4 | 李文俊, 褚赓, 彭佳悦, 等. 锂离子电池基础科学问题(Ⅻ)——表征方法[J]. 储能科学与技术, 2014, 3(6): 642-667. DOI: 10.3969/j.issn.2095-4239.2014.06.012. |
LI W J, CHU G, PENG J Y, et al. Fundamental scientific aspects of lithium batteries(Ⅻ)—Characterization techniques[J]. Energy Storage Science and Technology, 2014, 3(6): 642-667. DOI: 10.3969/j.issn.2095-4239.2014.06.012. | |
5 | SHEN X, ZHANG R, WANG S H, et al. The dynamic evolution of aggregated lithium dendrites in lithium metal batteries[J]. Chinese Journal of Chemical Engineering, 2021, 37: 137-143. DOI: 10. 1016/j.cjche.2021.05.008. |
6 | JIN Y, LE P M L, GAO P Y, et al. Low-solvation electrolytes for high-voltage sodium-ion batteries[J]. Nature Energy, 2022, 7: 718-725. DOI: 10.1038/s41560-022-01055-0. |
7 | RYU H H, NAMKOONG B, KIM J H, et al. Capacity fading mechanisms in Ni-rich single-crystal NCM cathodes[J]. ACS Energy Letters, 2021, 6(8): 2726-2734. DOI: 10.1021/acsenergylett.1c01089. |
8 | WANG H, WATKINS T R, SIMUNOVIC S, et al. Fragmentation of copper current collectors in Li-ion batteries during spherical indentation[J]. Journal of Power Sources, 2017, 364: 432-436. DOI: 10.1016/j.jpowsour.2017.08.068. |
9 | KIM H R, WOO S G, KIM J H, et al. Capacity fading behavior of Ni-rich layered cathode materials in Li-ion full cells[J]. Journal of Electroanalytical Chemistry, 2016, 782: 168-173. DOI: 10.1016/j.jelechem.2016.10.032. |
10 | MOTOYAMA M, EJIRI M, IRIYAMA Y. In-situ electron microscope observations of electrochemical Li deposition/dissolution with a LiPON electrolyte[J]. Electrochemistry, 2014, 82(5): 364-368. DOI: 10.5796/electrochemistry.82.364. |
11 | NAGAO M, HAYASHI A, TATSUMISAGO M, et al. In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S-P2S5 solid electrolyte[J]. Physical Chemistry Chemical Physics, 2013, 15(42): 18600-18606. DOI: 10.1039/c3cp51059j. |
12 | CHEN D, INDRIS S, SCHULZ M, et al. In situ scanning electron microscopy on lithium-ion battery electrodes using an ionic liquid[J]. Journal of Power Sources, 2011, 196(15): 6382-6387. DOI: 10.1016/j.jpowsour.2011.04.009. |
13 | ZHENG F H, YANG C H, XIONG X H, et al. Nanoscale surface modification of lithium-rich layered-oxide composite cathodes for suppressing voltage fade[J]. Angewandte Chemie International Edition, 2015, 54(44): 13058-13062. DOI: 10.1002/anie. 201506408. |
14 | CHOI I, LEE M J, OH S M, et al. Fading mechanisms of carbon-coated and disproportionated Si/SiOx negative electrode (Si/SiOx/C) in Li-ion secondary batteries: Dynamics and component analysis by TEM[J]. Electrochimica Acta, 2012, 85: 369-376. DOI: 10.1016/j.electacta.2012.08.098. |
15 | BEN L B, YU H L, CHEN B, et al. Unusual spinel-to-layered transformation in LiMn2O4 cathode explained by electrochemical and thermal stability investigation[J]. ACS Applied Materials & Interfaces, 2017, 9(40): 35463-35475. DOI: 10.1021/acsami.7b11303. |
16 | GONG Y, ZHANG J N, JIANG L W, et al. In situ atomic-scale observation of electrochemical delithiation induced structure evolution of LiCoO2 cathode in a working all-solid-state battery[J]. Journal of the American Chemical Society, 2017, 139(12): 4274-4277. DOI: 10.1021/jacs.6b13344. |
17 | GU M, PARENT L R, MEHDI B L, et al. Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes[J]. Nano Letters, 2013, 13(12): 6106-6112. DOI: 10.1021/nl403402q. |
18 | PENG Y F, ZHONG C, DING M F, et al. Quantitative analysis of active lithium loss and degradation mechanism in temperature accelerated aging process of lithium-ion batteries[J]. Advanced Functional Materials, 2024: 2404495. DOI: 10.1002/adfm. 202404495. |
19 | MARTIN L, MARTINEZ H, ULLDEMOLINS M, et al. Evolution of the Si electrode/electrolyte interface in lithium batteries characterized by XPS and AFM techniques: The influence of vinylene carbonate additive[J]. Solid State Ionics, 2012, 215: 36-44. DOI: 10.1016/j.ssi.2012.03.042. |
20 | DAHÉRON L, DEDRYVÈRE R, MARTINEZ H, et al. Electron transfer mechanisms upon lithium deintercalation from LiCoO2 to CoO2 investigated by XPS[J]. Chemistry of Materials, 2008, 20(2): 583-590. DOI: 10.1021/cm702546s. |
21 | SCHULZ N, HAUSBRAND R, WITTICH C, et al. XPS-surface analysis of SEI layers on Li-ion cathodes: Part II. SEI-composition and formation inside composite electrodes[J]. Journal of the Electrochemical Society, 2018, 165(5): A833-A846. DOI: 10.1149/2.0881803jes. |
22 | BODENES L, NATUREL R, MARTINEZ H, et al. Lithium secondary batteries working at very high temperature: Capacity fade and understanding of aging mechanisms[J]. Journal of Power Sources, 2013, 236: 265-275. DOI: 10.1016/j.jpowsour. 2013.02.067. |
23 | YANG L, TAKAHASHI M, WANG B F. A study on capacity fading of lithium-ion battery with manganese spinel positive electrode during cycling[J]. Electrochimica Acta, 2006, 51(16): 3228-3234. DOI: 10.1016/j.electacta.2005.09.014. |
24 | SCHWÖBEL A, HAUSBRAND R, JAEGERMANN W. Interface reactions between LiPON and lithium studied by in situ X-ray photoemission[J]. Solid State Ionics, 2015, 273: 51-54. DOI: 10.1016/j.ssi.2014.10.017. |
25 | TANG C Y, LEUNG K, HAASCH R T, et al. LiMn2O4 surface chemistry evolution during cycling revealed by in situ auger electron spectroscopy and X-ray photoelectron spectroscopy[J]. ACS Applied Materials & Interfaces, 2017, 9(39): 33968-33978. DOI: 10.1021/acsami.7b10442. |
26 | WU J P, WENG S T, ZHANG X, et al. In situ detecting thermal stability of solid electrolyte interphase (SEI)[J]. Small, 2023, 19(25): 2208239. DOI: 10.1002/smll.202208239. |
27 | ZHENG J Y, ZHENG H, WANG R, et al. 3D visualization of inhomogeneous multi-layered structure and Young's modulus of the solid electrolyte interphase (SEI) on silicon anodes for lithium ion batteries[J]. Physical Chemistry Chemical Physics, 2014, 16(26): 13229-13238. DOI: 10.1039/c4cp01968g. |
28 | NAGPURE S C, BHUSHAN B, BABU S S. Surface potential measurement of aged Li-ion batteries using Kelvin probe microscopy[J]. Journal of Power Sources, 2011, 196(3): 1508-1512. DOI: 10.1016/j.jpowsour.2010.08.031. |
29 | KOSTECKI R, KONG F P, MATSUO Y, et al. Interfacial studies of a thin-film Li2Mn4O9 electrode[J]. Electrochimica Acta, 1999, 45(1/2): 225-233. DOI: 10.1016/S0013-4686(99)00206-6. |
30 | JEONG S K, INABA M, IRIYAMA Y, et al. AFM study of surface film formation on a composite graphite electrode in lithium-ion batteries[J]. Journal of Power Sources, 2003, 119: 555-560. DOI: 10.1016/S0378-7753(03)00288-X. |
31 | LIU Z, LU P, ZHANG Q L, et al. A bottom-up formation mechanism of solid electrolyte interphase revealed by isotope-assisted time-of-flight secondary ion mass spectrometry[J]. The Journal of Physical Chemistry Letters, 2018, 9(18): 5508-5514. DOI: 10.1021/acs.jpclett.8b02350. |
32 | LU P, HARRIS S J. Lithium transport within the solid electrolyte interphase[J]. Electrochemistry Communications, 2011, 13(10): 1035-1037. DOI: 10.1016/j.elecom.2011.06.026. |
33 | NANDA S, MANTHIRAM A. Lithium degradation in lithium–sulfur batteries: Insights into inventory depletion and interphasial evolution with cycling[J]. Energy & Environmental Science, 2020, 13(8): 2501-2514. DOI: 10.1039/D0EE01074J. |
34 | WANG Y, LU Y C. Isotopic labeling reveals active reaction interfaces for electrochemical oxidation of lithium peroxide[J]. Angewandte Chemie (International Ed), 2019, 58(21): 6962-6966. DOI: 10.1002/anie.201901350. |
35 | ZHANG Y Y, SU M, YU X F, et al. Investigation of ion-solvent interactions in nonaqueous electrolytes using in situ liquid SIMS[J]. Analytical Chemistry, 2018, 90(5): 3341-3348. DOI: 10.1021/acs.analchem.7b04921. |
36 | ZHOU Y F, SU M, YU X F, et al. Real-time mass spectrometric characterization of the solid-electrolyte interphase of a lithium-ion battery[J]. Nature Nanotechnology, 2020, 15(3): 224-230. DOI: 10.1038/s41565-019-0618-4. |
37 | OTTO S K, RIEGGER L M, FUCHS T, et al. In situ investigation of lithium metal–solid electrolyte anode interfaces with ToF-SIMS[J]. Advanced Materials Interfaces, 2022, 9(13): 2102387. DOI: 10.1002/admi.202102387. |
38 | SHEN X Y, YU H L, BEN L B, et al. High energy density in ultra-thick and flexible electrodes enabled by designed conductive agent/binder composite[J]. Journal of Energy Chemistry, 2024, 90: 133-143. DOI: 10.1016/j.jechem.2023.10.052. |
39 | CHENG H R, MA Z, KUMAR P, et al. High voltage electrolyte design mediated by advanced solvation chemistry toward high energy density and fast charging lithium-ion batteries[J]. Advanced Energy Materials, 2024, 14(18): 2304321. DOI: 10. 1002/aenm.202304321. |
40 | LEE S, LI W D, DOLOCAN A, et al. In-depth analysis of the degradation mechanisms of high-nickel, low/no-cobalt layered oxide cathodes for lithium-ion batteries[J]. Advanced Energy Materials, 2021, 11(31): 2100858. DOI: 10.1002/aenm. 202100858. |
41 | JUNG E Y, PARK C S, LEE J C, et al. Experimental study on solid electrolyte interphase of graphite electrode in Li-ion battery by surface analysis technique[J]. Molecular Crystals and Liquid Crystals, 2018, 663(1): 158-167. DOI: 10.1080/15421406. 2018. 1470709. |
42 | ZHANG Y, ZHAI W B, HU X C, et al. Application of Auger electron spectroscopy in lithium-ion conducting oxide solid electrolytes[J]. Nano Research, 2023, 16(3): 4039-4048. DOI: 10.1007/s12274-022-4431-2. |
43 | MOREY J, LEDEUIL J B, MARTINEZ H, et al. Operando Auger/XPS using an electron beam to reveal the dynamics/morphology of Li plating and interphase formation in solid-state batteries[J]. Journal of Materials Chemistry A, 2023, 11(17): 9512-9520. DOI: 10.1039/D3TA00386H. |
44 | 张杰男, 汪君洋, 吕迎春, 等. 锂电池研究中的X射线多晶衍射实验与分析方法综述[J]. 储能科学与技术, 2019, 8(3): 443-467. DOI: 10.12028/j.issn.2095-4239.2018.0212. |
ZHANG J N, WANG J Y, LÜ Y C, et al. Experimental measurement and analysis methods of polycrystalline X-ray diffraction for lithium batteries[J]. Energy Storage Science and Technology, 2019, 8(3): 443-467. DOI: 10.12028/j.issn.2095-4239.2018.0212. | |
45 | LIU P, WANG J, HICKS-GARNER J, et al. Aging mechanisms of LiFePO4 batteries deduced by electrochemical and structural analyses[J]. Journal of the Electrochemical Society, 2010, 157(4): A499. DOI: 10.1149/1.3294790. |
46 | KLETT M, ERIKSSON R, GROOT J, et al. Non-uniform aging of cycled commercial LiFePO4// graphite cylindrical cells revealed by post-mortem analysis[J]. Journal of Power Sources, 2014, 257: 126-137. DOI: 10.1016/j.jpowsour.2014.01.105. |
47 | WOO S G, KIM J H, KIM H R, et al. Failure mechanism analysis of LiNi0.88Co0.09Mn0.03O2 cathodes in Li-ion full cells[J]. Journal of Electroanalytical Chemistry, 2017, 799: 315-320. DOI: 10.1016/j.jelechem.2017.06.034. |
48 | BAK S M, HU E Y, ZHOU Y N, et al. Structural changes and thermal stability of charged LiNixMnyCozO 2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy[J]. ACS Applied Materials & Interfaces, 2014, 6(24): 22594-22601. DOI: 10.1021/am506712c. |
49 | BAK S M, NAM K W, CHANG W, et al. Correlating structural changes and gas evolution during the thermal decomposition of charged LixNi0.8Co0.15Al0.05O2 cathode materials[J]. Chemistry of Materials, 2013, 25(3): 337-351. DOI: 10.1021/cm303096e. |
50 | BELHAROUAK I, LU W Q, VISSERS D, et al. Safety characteristics of Li(Ni0.8Co0.15Al0.05)O2 and Li(Ni1/3Co1/3Mn1/3)O2[J]. Electrochemistry Communications, 2006, 8(2): 329-335. DOI: 10.1016/j.elecom.2005.12.007. |
51 | RANA J, STAN M, KLOEPSCH R, et al. Structural changes in Li2MnO3 cathode material for Li-ion batteries[J]. Advanced Energy Materials, 2014, 4(5): DOI: 10.1002/aenm.201300998. |
52 | ABRAHAM D P, TWESTEN R D, BALASUBRAMANIAN M, et al. Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells[J]. Electrochemistry Communications, 2002, 4(8): 620-625. DOI: 10.1016/S1388-2481(02)00388-0. |
53 | WANDT J, FREIBERG A, THOMAS R, et al. Transition metal dissolution and deposition in Li-ion batteries investigated by operando X-ray absorption spectroscopy[J]. Journal of Materials Chemistry A, 2016, 4(47): 18300-18305. DOI: 10.1039/C6TA08865A. |
54 | TAKAMATSU D, KOYAMA Y, ORIKASA Y, et al. First in situ observation of the LiCoO2 electrode/electrolyte interface by total-reflection X-ray absorption spectroscopy[J]. Angewandte Chemie (International Ed), 2012, 51(46): 11597-11601. DOI: 10.1002/anie.201203910. |
55 | LIN F, NORDLUND D, MARKUS I M, et al. Profiling the nanoscale gradient in stoichiometric layered cathode particles for lithium-ion batteries[J]. Energy & Environmental Science, 2014, 7(9): 3077-3085. DOI: 10.1039/C4EE01400F. |
56 | YAMAMOTO K, MINATO T, MORI S, et al. Improved cyclic performance of lithium-ion batteries: An investigation of cathode/electrolyte interface via in situ total-reflection fluorescence X-ray absorption spectroscopy[J]. The Journal of Physical Chemistry C, 2014, 118(18): 9538-9543. DOI: 10.1021/jp5011132. |
57 | YU X Q, WANG Q, ZHOU Y N, et al. High rate delithiation behaviour of LiFePO4 studied by quick X-ray absorption spectroscopy[J]. Chemical Communications, 2012, 48(94): 11537-11539. DOI: 10.1039/c2cc36382h. |
58 | ZHOU Y N, YUE J L, HU E Y, et al. High-rate charging induced intermediate phases and structural changes of layer-structured cathode for lithium-ion batteries[J]. Advanced Energy Materials, 2016, 6(21): 1600597. DOI: 10.1002/aenm.201600597. |
59 | NAM K W, WANG X J, YOON W S, et al. In situ X-ray absorption and diffraction studies of carbon coated LiFe1/4Mn1/4Co1/4Ni1/4PO4 cathode during first charge[J]. Electrochemistry Communications, 2009, 11(4): 913-916. DOI: 10.1016/j.elecom. 2009.02.031. |
60 | YOON W S, CHUNG K Y, NAM K W, et al. Electronic structural changes of the electrochemically delithiated LiFe0.5Co0.5PO4 cathode material studied by X-ray absorption spectroscopy[J]. Journal of Power Sources, 2008, 183(1): 427-430. DOI: 10.1016/j.jpowsour.2008.05.030. |
61 | SIDDIQUE N A, SALEHI A, WEI Z, et al. Length-scale-dependent phase transformation of LiFePO4: An in situ and operando study using micro-Raman spectroscopy and XRD[J]. ChemPhysChem, 2015, 16(11): 2383-2388. DOI: 10.1002/cphc.201500299. |
62 | HUANG W W, FRECH R. In situ Raman spectroscopic studies of electrochemical intercalation in LixMn2O4-based cathodes[J]. Journal of Power Sources, 1999, 81: 616-620. DOI: 10.1016/S0378-7753(99)00231-1. |
63 | HARDWICK L J, BUQA H, NOVÁK P. Graphite surface disorder detection using in situ Raman microscopy[J]. Solid State Ionics, 2006, 177(26/27/28/29/30/31/32): 2801-2806. DOI: 10.1016/j.ssi.2006.03.032. |
64 | BADDOUR-HADJEAN R, PEREIRA-RAMOS J P. Raman microspectrometry applied to the study of electrode materials for lithium batteries[J]. Chemical Reviews, 2010, 110(3): 1278-1319. DOI: 10.1021/cr800344k. |
65 | LIN C, TANG A H, WANG W W. A review of SOH estimation methods in lithium-ion batteries for electric vehicle applications[J]. Energy Procedia, 2015, 75: 1920-1925. DOI: 10.1016/j.egypro.2015.07.199. |
66 | LIU M, ZHANG S N, VAN ECK E R H, et al. Improving Li-ion interfacial transport in hybrid solid electrolytes[J]. Nature Nanotechnology, 2022, 17(9): 959-967. DOI: 10.1038/s41565-022-01162-9. |
67 | CHENG Z, LIU M, GANAPATHY S, et al. Revealing the impact of space-charge layers on the Li-ion transport in all-solid-state batteries[J]. Joule, 2020, 4(6): 1311-1323. DOI: 10.1016/j.joule. 2020.04.002. |
68 | ZHAO L W, WATANABE I, DOI T, et al. TG-MS analysis of solid electrolyte interphase (SEI) on graphite negative-electrode in lithium-ion batteries[J]. Journal of Power Sources, 2006, 161(2): 1275-1280. DOI: 10.1016/j.jpowsour.2006.05.045. |
69 | WATANABE I, YAMAKI J I. Thermalgravimetry-mass spectrometry studies on the thermal stability of graphite anodes with electrolyte in lithium-ion battery[J]. Journal of Power Sources, 2006, 153(2): 402-404. DOI: 10.1016/j.jpowsour. 2005. 05.027. |
70 | WANG H S, RUS E, SAKURABA T, et al. CO 2 and O 2 evolution at high voltage cathode materials of Li-ion batteries: A differential electrochemical mass spectrometry study[J]. Analytical Chemistry, 2014, 86(13): 6197-6201. DOI: 10.1021/ac403317d. |
71 | NIE K H, WANG X L, QIU J L, et al. Increasing Poly(ethylene oxide) stability to 4.5 V by surface coating of the cathode[J]. ACS Energy Letters, 2020, 5(3): 826-832. DOI: 10.1021/acsenergylett. 9b02739. |
72 | ZHANG H P, ZHANG P, LI Z H, et al. A novel sandwiched membrane as polymer electrolyte for lithium ion battery[J]. Electrochemistry Communications, 2007, 9(7): 1700-1703. DOI: 10.1016/j.elecom.2007.03.021. |
73 | SONG J X, ZHOU M J, YI R, et al. Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries[J]. Advanced Functional Materials, 2014, 24(37): 5904-5910. DOI: 10.1002/adfm.201401269. |
74 | 陈作锋, 庄全超, 姜艳霞, 等. 红外光谱学用于锂离子电池研究[J]. 电池, 2004, 34(5): 362-363. DOI: 10.3969/j.issn.1001-1579. 2004. 05.021. |
CHEN Z F, ZHUANG Q C, JIANG Y X, et al. Application of IR spectroscopy in Li-ion batteries studies[J]. Battery Bimonthly, 2004, 34(5): 362-363. DOI: 10.3969/j.issn.1001-1579. 2004. 05.021. | |
75 | WILKEN S, JOHANSSON P, JACOBSSON P. Infrared spectroscopy of instantaneous decomposition products of LiPF6-based lithium battery electrolytes[J]. Solid State Ionics, 2012, 225: 608-610. DOI: 10.1016/j.ssi.2012.02.004. |
76 | YUFIT V, SHEARING P, HAMILTON R W, et al. Investigation of lithium-ion polymer battery cell failure using X-ray computed tomography[J]. Electrochemistry Communications, 2011, 13(6): 608-610. DOI: 10.1016/j.elecom.2011.03.022. |
77 | VANPEENE V, ETIEMBLE A, BONNIN A, et al. In-situ X-ray tomographic study of the morphological changes of a Si/C paper anode for Li-ion batteries[J]. Journal of Power Sources, 2017, 350: 18-27. DOI: 10.1016/j.jpowsour.2017.03.044. |
78 | FINEGAN D P, SCHEEL M, ROBINSON J B, et al. In-operando high-speed tomography of lithium-ion batteries during thermal runaway[J]. Nature Communications, 2015, 6: 6924. DOI: 10. 1038/ncomms7924. |
79 | FINEGAN D P, SCHEEL M, ROBINSON J B, et al. Investigating lithium-ion battery materials during overcharge-induced thermal runaway: An operando and multi-scale X-ray CT study[J]. Physical Chemistry Chemical Physics, 2016, 18(45): 30912-30919. DOI: 10.1039/c6cp04251a. |
80 | FINEGAN D P, DARCY E, KEYSER M, et al. Characterising thermal runaway within lithium-ion cells by inducing and monitoring internal short circuits[J]. Energy & Environmental Science, 2017, 10(6): 1377-1388. DOI: 10.1039/C7EE00385D. |
81 | CHUNG D W, SHEARING P R, BRANDON N P, et al. Particle size polydispersity in Li-ion batteries[J]. Journal of the Electrochemical Society, 2014, 161(3): A422-A430. DOI: 10.1149/2.097403jes. |
82 | CARTER R, HUHMAN B, LOVE C T, et al. X-ray computed tomography comparison of individual and parallel assembled commercial lithium iron phosphate batteries at end of life after high rate cycling[J]. Journal of Power Sources, 2018, 381: 46-55. DOI: 10.1016/j.jpowsour.2018.01.087. |
83 | SUN F, ZIELKE L, MARKÖTTER H, et al. Morphological evolution of electrochemically plated/stripped lithium microstructures investigated by synchrotron X-ray phase contrast tomography[J]. ACS Nano, 2016, 10(8): 7990-7997. DOI: 10.1021/acsnano.6b03939. |
84 | SUN F, MORONI R, DONG K, et al. Study of the mechanisms of internal short circuit in a Li/Li cell by synchrotron X-ray phase contrast tomography[J]. ACS Energy Letters, 2017, 2(1): 94-104. DOI: 10.1021/acsenergylett.6b00589. |
85 | SUN F, MARKÖTTER H, MANKE I, et al. Three-dimensional visualization of gas evolution and channel formation inside a lithium-ion battery[J]. ACS Applied Materials & Interfaces, 2016, 8(11): 7156-7164. DOI: 10.1021/acsami.6b00708. |
86 | SHEARING P R, HOWARD L E, JØRGENSEN P S, et al. Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery[J]. Electrochemistry Communications, 2010, 12(3): 374-377. DOI: 10.1016/j.elecom. 2009.12.038. |
87 | ZIELKE L, HUTZENLAUB T, WHEELER D R, et al. A combination of X-ray tomography and carbon binder modeling: Reconstructing the three phases of LiCoO2 Li-ion battery cathodes[J]. Advanced Energy Materials, 2014, 4(8): DOI: 10. 1002/aenm.201301617. |
88 | EBNER M, MARONE F, STAMPANONI M, et al. Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries[J]. Science, 2013, 342(6159): 716-720. DOI: 10. 1126/science.1241882. |
89 | LIN F, NORDLUND D, LI Y Y, et al. Metal segregation in hierarchically structured cathode materials for high-energy lithiumbatteries[J]. Nature Energy, 2016, 1: 15004. DOI: 10.1038/nenergy.2015.4. |
90 | LIN F, LIU Y J, YU X Q, et al. Synchrotron X-ray analytical techniques for studying materials electrochemistry in rechargeable batteries[J]. Chemical Reviews, 2017, 117(21): 13123-13186. DOI: 10.1021/acs.chemrev.7b00007. |
91 | XU Y H, HU E Y, ZHANG K, et al. In situ visualization of state-of-charge heterogeneity within a LiCoO2 particle that evolves upon cycling at different rates[J]. ACS Energy Letters, 2017, 2(5): 1240-1245. DOI: 10.1021/acsenergylett.7b00263. |
92 | REHMAN A U, POTEL C, DE BELLEVAL J F. Numerical modeling of the effects on reflected acoustic field for the changes in internal layer orientation of a composite[J]. Ultrasonics, 1998, 36(1/2/3/4/5): 343-348. DOI: 10.1016/S0041-624X(97)00084-X. |
93 | 沈越, 黄云辉, 邓哲, 等. 一种可控温电池超声测试盒及测试系统: CN207037043U[P]. 2018-02-23. |
94 | 谢宏, 黄锴, 杜进桥, 等. 锂离子电池电解液痕量水污染的超声表象[J]. 储能科学与技术, 2022, 11(12): 4030-4037. DOI: 10.19799/j.cnki.2095-4239.2022.0599. |
XIE H, HUANG K, DU J Q, et al. Studies on ultrasonic appearance of trace water contamination in lithium-ion battery electrolyte[J]. Energy Storage Science and Technology, 2022, 11(12): 4030-4037. DOI: 10.19799/j.cnki.2095-4239.2022.0599. | |
95 | 邓哲, 黄震宇, 刘磊, 等. 超声技术在锂离子电池表征中的应用[J]. 储能科学与技术, 2019, 8(6): 1033-1039. DOI: 10.12028/j.issn.2095-4239.2019.0146. |
DENG Z, HUANG Z Y, LIU L, et al. Applications of ultrasound technique in characterization of lithium-ion batteries[J]. Energy Storage Science and Technology, 2019, 8(6): 1033-1039. DOI: 10.12028/j.issn.2095-4239.2019.0146. | |
96 | LIU Q Q, XIONG D J, PETIBON R, et al. Gas evolution during unwanted lithium plating in Li-ion cells with EC-based or EC-free electrolytes[J]. Journal of the Electrochemical Society, 2016, 163(14): A3010-A3015. DOI: 10.1149/2.0711614jes. |
97 | 常俊杰, 杨凯, 李光亚, 等. 空耦超声波技术用于锂离子电池缺陷检测[J]. 电池, 2017, 47(5): 315-317. DOI: 10.19535/j.1001-1579. 2017.05.016. |
CHANG J J, YANG K, LI G Y, et al. Application of air-coupled ultrasonic technology in Li-ion battery defect detection[J]. Battery Bimonthly, 2017, 47(5): 315-317. DOI: 10.19535/j.1001-1579. 2017.05.016. | |
98 | GOLD L, BACH T, VIRSIK W, et al. Probing lithium-ion batteries' state-of-charge using ultrasonic transmission-Concept and laboratory testing[J]. Journal of Power Sources, 2017, 343: 536-544. DOI: 10.1016/j.jpowsour.2017.01.090. |
99 | WU Y, WANG Y R, YUNG W K C, et al. Ultrasonic health monitoring of lithium-ion batteries[J]. Electronics, 2019, 8(7): 751. DOI: 10.3390/electronics8070751. |
[1] | 曹巍, 陈飞, 孔祥栋, 朱志成, 韩雪冰, 卢兰光, 郑岳久. 锂离子电池极片涂布工艺研究进展[J]. 储能科学与技术, 2025, 14(1): 90-103. |
[2] | 邢远秀, 刘颛玮, 邢玉峰, 王文波. BDD-DETR:高效感知小目标的锂电池表面缺陷检测[J]. 储能科学与技术, 2025, 14(1): 370-379. |
[3] | 李建萱, 林琛, 周忠凯. 基于减平均优化算法与双向长短期记忆网络的锂离子电池健康状态估算[J]. 储能科学与技术, 2025, 14(1): 358-369. |
[4] | 叶石丰, 洪朝锋, 綦晓, 吴伟雄, 谭子健, 周奇, 张兆阳. 基于EEMD-GRU-NN锂离子电池表面温度预测方法研究[J]. 储能科学与技术, 2025, 14(1): 380-387. |
[5] | 刘通, 杨瑰婷, 毕辉, 梅悦旎, 刘硕, 宫勇吉, 罗文雷. 高能量密度与高功率密度兼顾型锂离子电池研究现状与展望[J]. 储能科学与技术, 2025, 14(1): 54-76. |
[6] | 李可, 朱顺兵, 陶致格, 王赫. 复合水系灭火剂抑制磷酸铁锂电池火灾实验[J]. 储能科学与技术, 2025, 14(1): 140-151. |
[7] | 张文婧, 肖伟, 伊亚辉, 钱利勤. 锂离子电池安全改性策略研究进展[J]. 储能科学与技术, 2025, 14(1): 104-123. |
[8] | 刘勇, 于怀汶, 刘大鹏, 穆勇, 王瀛洲, 张秀宇. 基于ABC-LSTM模型的锂离子电池剩余使用寿命预测[J]. 储能科学与技术, 2025, 14(1): 331-345. |
[9] | 陈峥, 彭月, 胡竞元, 申江卫, 肖仁鑫, 夏雪磊. 基于短期充电数据和增强鲸鱼优化算法的锂离子电池容量预测[J]. 储能科学与技术, 2025, 14(1): 319-330. |
[10] | 梅悦旎, 屈雯洁, 程广玉, 向永贵, 陆海燕, 邵晓丹, 张益明, 王可. 锂离子电池正极补锂技术研究进展[J]. 储能科学与技术, 2025, 14(1): 77-89. |
[11] | 孙中麟, 李嘉波, 田迪, 王志璇, 邢晓静. 基于COA-LSTM和VMD的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2024, 13(9): 3254-3265. |
[12] | 陆继忠, 彭思敏, 李晓宇. 基于多特征量分析和LSTM-XGBoost模型的锂离子电池SOH估计方法[J]. 储能科学与技术, 2024, 13(9): 2972-2982. |
[13] | 胡雪峰, 常先雷, 刘肖肖, 徐威, 张文彬. 适用于宽温度范围的锂离子电池SOC估计方法[J]. 储能科学与技术, 2024, 13(9): 2983-2994. |
[14] | 沈思远, 刘亚坤, 罗栋煌, 李雨珺, 郝伟. 储能锂离子电池模组暂态过电压防护设计与电路研发[J]. 储能科学与技术, 2024, 13(9): 3277-3286. |
[15] | 陈媛, 章思源, 蔡宇晶, 黄小贺, 刘炎忠. 融合多项式特征扩展与CNN-Transformer模型的锂电池SOH估计[J]. 储能科学与技术, 2024, 13(9): 2995-3005. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||