1 |
蔡雨思, 李泽文, 刘萍, 等. 基于间接健康特征优化与多模型融合的锂电池SOH-RUL联合预测[J]. 电工技术学报, 2024, 39(18): 5883-5898. DOI: 10.19595/j.cnki.1000-6753.tces.231057.
|
|
CAI Y S, LI Z W, LIU P, et al. Joint prediction of lithium battery state of health and remaining useful life based on indirect health features optimization and multi-model fusion[J]. Transactions of China Electrotechnical Society, 2024, 39(18): 5883-5898. DOI: 10.19595/j.cnki.1000-6753.tces.231057.
|
2 |
HE Y, BAI W Y, WANG L L, et al. SOH estimation for lithium-ion batteries: An improved GPR optimization method based on the developed feature extraction[J]. Journal of Energy Storage, 2024, 83: 110678. DOI: 10.1016/j.est.2024.110678.
|
3 |
SHU X, SHEN S Q, SHEN J W, et al. State of health prediction of lithium-ion batteries based on machine learning: Advances and perspectives[J]. iScience, 2021, 24(11): 103265. DOI: 10.1016/j.isci.2021.103265.
|
4 |
PENG K L, DENG Z W, BAO Z B, et al. Data-driven battery capacity estimation based on partial discharging capacity curve for lithium-ion batteries[J]. Journal of Energy Storage, 2023, 67: 107549. DOI: 10.1016/j.est.2023.107549.
|
5 |
李卓昊, 石琼林, 王康丽, 等. 锂离子电池健康状态估计方法研究现状与展望[J]. 电力系统自动化, 2024, 48(20): 109-129. DOI: 10.7500/AEPS20231221006.
|
|
LI Z H, SHI Q L, WANG K L, et al. Research status and prospects of state of health estimation methods for lithium-ion batteries[J]. Automation of Electric Power Systems, 2024, 48(20): 109-129. DOI: 10.7500/AEPS20231221006.
|
6 |
SHU X, SHEN J W, LI G, et al. A flexible state-of-health prediction scheme for lithium-ion battery packs with long short-term memory network and transfer learning[J]. IEEE Transactions on Transportation Electrification, 2021, 7(4): 2238-2248. DOI: 10.1109/TTE.2021.3074638.
|
7 |
SU S S, LI W, MOU J H, et al. A hybrid battery equivalent circuit model, deep learning, and transfer learning for battery state monitoring[J]. IEEE Transactions on Transportation Electrification, 2023, 9(1): 1113-1127. DOI: 10.1109/TTE. 2022. 3204843.
|
8 |
陈峥, 李磊磊, 舒星, 等. 基于改进容量增量分析法的锂电池可用容量估计[J]. 中国公路学报, 2022, 35(8): 20-30. DOI: 10.19721/j.cnki.1001-7372.2022.08.003.
|
|
CHEN Z, LI L L, SHU X, et al. Estimation of available capacity for lithium-ion battery based on improved increment capacity analysis[J]. China Journal of Highway and Transport, 2022, 35(8): 20-30. DOI: 10.19721/j.cnki.1001-7372.2022.08.003.
|
9 |
谷平维, 段彬, 康永哲, 等. 基于随机充电数据的锂离子电池容量在线估计[J]. 机械工程学报, 2023, 59(22): 100-110. DOI: 10.3901/JME.2023.22.100.
|
|
GU P W, DUAN B, KANG Y Z, et al. Online lithium-ion battery capacity estimation based on random charging data[J]. Journal of Mechanical Engineering, 2023, 59(22): 100-110. DOI: 10.3901/JME.2023.22.100.
|
10 |
ZHANG X D, FAN J, ZOU Y, et al. Realizing accurate battery capacity estimation using 4 Min 1C discharging data[J]. Energy, 2023, 282: 128744. DOI: 10.1016/j.energy.2023.128744.
|
11 |
陈峥, 陈洋, 申江卫, 等. 基于优化支持向量回归算法的锂离子电池可用容量估计[J]. 储能科学与技术, 2023, 12(10): 3203-3213. DOI: 10.19799/j.cnki.2095-4239.2023.0387.
|
|
CHEN Z, CHEN Y, SHEN J W, et al. Available capacity estimation of lithium-ion batteriesbased on the optimized support vector regression algorithm[J]. Energy Storage Science and Technology, 2023, 12(10): 3203-3213. DOI: 10.19799/j.cnki.2095-4239. 2023. 0387.
|
12 |
XIONG X, WANG Y J, LI K Q, et al. State of health estimation for lithium-ion batteries using Gaussian process regression-based data reconstruction method during random charging process[J]. Journal of Energy Storage, 2023, 72: 108390. DOI: 10.1016/j.est. 2023.108390.
|
13 |
CHEN Z, ZHAO H Q, ZHANG Y J, et al. State of health estimation for lithium-ion batteries based on temperature prediction and gated recurrent unit neural network[J]. Journal of Power Sources, 2022, 521: 230892. DOI: 10.1016/j.jpowsour. 2021.230892.
|
14 |
张梦迪, 刘洋, 陈健, 等. 基于ISSA-GPR的锂离子电池健康状态估计[J/OL]. 电源学报, 1-13[2024-06-30]. http://kns.cnki.net/kcms/detail/12.1420.TM.20231219.1345.010.html.
|
|
ZHANG M D, LIU Y, CHEN J, et al. Estimation of health state of lithium-ion battery based on ISSA-GPR[J]. Journal of Power Supply, 1-13[2024-06-30]. http://kns.cnki.net/kcms/detail/12.1420.TM.20231219.1345.010.html.
|
15 |
SUN H Q, WEN X K, LIU W, et al. State-of-health estimation of retired lithium-ion battery module aged at 1C-rate[J]. Journal of Energy Storage, 2022, 50: 104618. DOI: 10.1016/j.est. 2022. 104618.
|
16 |
ZUO H Y, LIANG J W, ZHANG B, et al. Intelligent estimation on state of health of lithium-ion power batteries based on failure feature extraction[J]. Energy, 2023, 282: 128794. DOI: 10.1016/j.energy.2023.128794.
|
17 |
SHEN J W, MA W S, SHU X, et al. Accurate state of health estimation for lithium-ion batteries under random charging scenarios[J]. Energy, 2023, 279: 128092. DOI: 10.1016/j.energy. 2023.128092.
|
18 |
夏向阳, 岳家辉, 曾小勇, 等. 基于状态相依的RBF-ARX模型的锂离子电池剩余容量估计方法[J]. 中国电机工程学报, 1-12[2024-12-30]. http://kns.cnki.net/kcms/detail/11.2107.TM.20240613. 1329. 012.html.
|
|
XIA X Y, YUE J H, ZENG X Y, The remaining capacity estimation of battery based on state-dependent RBF-ARX model[J]. Proceedings of the CSEE, 1-12[2024-12-30]. http://kns.cnki.net/kcms/detail/11.2107.TM.20240613.1329.012.html.
|
19 |
LIU J X, SHI J F, HAO F, et al. A novel enhanced global exploration whale optimization algorithm based on Lévy flights and judgment mechanism for global continuous optimization problems[J]. Engineering with Computers, 2023, 39(4): 2433-2461. DOI: 10.1007/s00366-022-01638-1.
|
20 |
CAO D, XU Y L, YANG Z L, et al. An enhanced whale optimization algorithm with improved dynamic opposite learning and adaptive inertia weight strategy[J]. Complex & Intelligent Systems, 2023, 9(1): 767-795. DOI: 10.1007/s40747-022-00827-1.
|
21 |
李臣, 张会林, 张建平. 基于核函数和超参数优化的退役锂电池健康状态估计[J]. 储能科学与技术, 2024, 13(6): 2010-2021. DOI: 10. 19799/j.cnki.2095-4239.2023.0918.
|
|
LI C, ZHANG H L, ZHANG J P. Estimated state of health for retired lithium batteries using kernel function and hyperparameter optimization[J]. Energy Storage Science and Technology, 2024, 13(6): 2010-2021. DOI: 10.19799/j.cnki.2095-4239.2023.0918.
|
22 |
CHRISTOPH B. Diagnosis and prognosis of degradation in lithium-ion batteries[D]. Oxford, South East England, UK: University of Oxford, 2017.
|