1 |
JI D, GAN H. Effects of providing total cost of ownership information on below-40 young consumers' intent to purchase an electric vehicle: A case study in China[J]. Energy Policy, 2022, 165: 112954.
|
2 |
LIU K. Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review[J]. Renewable and Sustainable Energy Reviews, 2019, 113: 109254.
|
3 |
霍丽萍, 栾伟玲, 庄子贤 . 锂离子电池储能安全技术的发展态势——从全球专利数据分析我国的发展现状[J]. 储能科学与技术, 2022, 11(8): 2671-2680.
|
|
HUO L P, LUAN W L, ZHUANG Z X. Development trend of energy storage safety technology for lithium-ion batteries analysis of global patent data and china's development status [J]. Energy Storage Science and Technology, 2022, 11(8): 2671-2680.
|
4 |
TENG J H, CHEN R J, LEE P T, et al. Accurate and efficient SOH estimation for retired batteries[J]. Energies, 2023, 16(3): 1240.
|
5 |
XU Z, WANG J, LUND P D, et al. Co-estimating the state of charge and health of lithium batteries through combining a minimalist electrochemical model and an equivalent circuit model[J]. Energy, 2022, 240: 122815.
|
6 |
NI Y L, XU J N, ZHU C B, et al. Accurate residual capacity estimation of retired LiFePO4 batteries based on mechanism and data-driven model[J]. Applied Energy, 2022, 305: 117922.
|
7 |
LI X, JU L, GENG G, et al. Data-driven state-of-health estimation for lithium-ion battery based on aging features[J]. Energy, 2023, 274: 127378.
|
8 |
YAN M A, YANG C, FAN Z, et al. Remaining useful life prediction of power battery based on extend h_∞ particle filter algorithm[J]. Journal of Mechanical Engineering, 2019, 55(20): 36-43.
|
9 |
CAI Y, CHEN W, SU Y, et al. Review of remaining useful life prediction for lithium-ion batteries[J]. Journal of Power Sources, 2021, 45: 678-682.
|
10 |
HU X, CHE Y, LIN X, et al. Battery health prediction using fusion-based feature selection and machine learning[J]. IEEE Transactions on Transportation Electrification, 2020, 7(2): 382 -398.
|
11 |
XU Z, WANG J, LUND P D, et al. Estimation and prediction of state of health of electric vehicle batteries using discrete incremental capacity analysis based on real driving data[J]. Energy, 2021, 225: 120160.
|
12 |
WENG C, CUI Y, SUN J, et al. On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis with support vector regression[J]. Journal of Power Sources, 2013, 235: 36-44.
|
13 |
JENU S, HENTUNEN A, HAAVISTO J, et al. State of health estimation of cycle aged large format lithium-ion cells based on partial charging[J]. Journal of Energy Storage, 2022, 46: 103855.
|
14 |
LIN Z, HU H, LIU W, et al. State of health estimation of lithium-ion batteries based on remaining area capacity[J]. Journal of Energy Storage, 2023, 63: 107078.
|
15 |
ZHU G R, KONG C, WANG J V, et al. A fractional-order model of lithium-ion battery considering polarization in electrolyte and thermal effect[J]. Electrochimica Acta, 2023, 438: 141461. DOI: 10.1016/j.electacta.2022.141461.
|
16 |
LI J, ADEWUYI K, LOTFI N, et al. A single particle model with chemical/mechanical degradation physics for lithium-ion battery State of Health (SOH) estimation[J]. Applied Energy, 2018, 212: 1178-1190.
|
17 |
SCHMIDT A P, BITZER M, IMRE Á W, et al. Model-based distinction and quantification of capacity loss and rate capability fade in Li-ion batteries[J]. Journal of Power Sources, 2010, 195(22): 7634-7638.
|
18 |
FU H J, LIU Z G, CUI K X, et al. Physics-informed neural network for spacecraft lithium-ion battery modeling and health diagnosis[J]. IEEE/ASME Transactions on Mechatronics, 2024. DOI: 10.1109/TMECH.2023.3348519.
|
19 |
刘伟霞, 田勋, 肖家勇, 等 . 基于混合模型及LSTM的锂电池SOH与剩余寿命预测[J]. 储能科学与技术, 2021, 10(2): 689-694.
|
|
LIU W X, TIAN X, XIAO J Y, et al. SOH and remaining life prediction of lithium battery based on hybrid model and LSTM[J]. Energy Storage Science and Technology, 2021, 10(2): 689-694.
|
20 |
王义, 刘欣, 高德欣 . 基于BiLSTM神经网络的锂电池SOH估计与RUL预测[J].电子测量技术, 2021, 44(20): 1-5.
|
|
WANG Y, LIU X, GAO D X. SOH estimation and RUL prediction of lithium battery based on BiLSTM neural network[J]. Electronic Measurement Technology, 2021, 44(20): 1-5.
|
21 |
ZHANG Y, XIN Y Q, Qian Q Z. PSO-optimised BiLSTM-attention network for lithium battery health state assessment[J]. Control Engineering, 2022, 29(2): 7.
|
22 |
TROJOVSKÝ P, DEHGHANI M. Subtraction-average-based optimizer: a new swarm-inspired metaheuristic algorithm for solving optimization problems[J]. Biomimetics, 2023, 8(2): 149.
|
23 |
WANG J, LIU P, HICKS-GARNER J, et al. Cycle-life model for graphite-LiFePO4 cells[J]. Journal of Power Sources, 2011, 196(8): 3942-3948.
|
24 |
BLOOM I, COLE B W, SOHN J J, et al. An accelerated calendar and cycle life study of Li-ion cells[J]. Journal of Power Sources, 2001, 101(2): 238-247.
|
25 |
韩雪冰 . 车用锂离子电池机理模型与状态估计研究[D]. 北京:清华大学, 2016.
|
|
HAN X B. Research on mechanism model and state estimation of automotive lithium-ion batteries [D]. Beijing: Tsinghua University, 2016.
|
26 |
吴欢欢, 代娟, 朱振东, 等 . 锂离子电池负极满嵌锂石墨的热稳定性[J]. 电池, 2020, 50(5): 446-449.
|
|
WU H H, DAI J, ZHU Z D, et al. Thermal stability of lithium-ion batteries anode with fully lithiated graphite[J]. Battery Bimonthly, 2020, 50(5): 446-449.
|
27 |
米成 . 锂离子电池界面反应活化能应用研究[J]. 湖南有色金属, 2023, 39(1): 55-58.
|
|
MI C. Application research on activation energy of interface reaction in lithium-ion batteries [J]. Hunan Nonferrous Metals, 2023, 39(1): 55-58.
|
28 |
毛百海, 覃吴, 肖显斌, 等 . 基于LSTM&GRU-Attention多联合模型的锂离子电池SOH估计[J]. 储能科学与技术, 2023, 12(11): 3519-3527.
|
|
MAO B H, QIN W, XIAO X B, et al. Based on LSTM&GRU-attention multi-modal model, state-of-health estimation of lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(11): 3519-3527.
|
29 |
SUN S, SUN J, WANG Z, et al. Prediction of battery soh by cnn-bilstm network fused with attention mechanism[J]. Energies, 2022, 15(12): 4428.
|