1 |
万广伟, 廖微, 张强. 锂离子电池剩余使用寿命预测综述[J]. 汽车零部件, 2023(5): 92-95. DOI: 10.19466/j.cnki.1674-1986.2023. 05.018.
|
|
WAN G W, LIAO W, ZHANG Q. Review on the prediction of the remaining useful life of lithium-ion batteries[J]. Automobile Parts, 2023(5): 92-95. DOI: 10.19466/j.cnki.1674-1986.2023.05.018.
|
2 |
KARIJADI I, CHOU S Y, DEWABHARATA A. Wind power forecasting based on hybrid CEEMDAN-EWT deep learning method[J]. Renewable Energy, 2023, 218: 119357. DOI: 10.1016/j.renene.2023.119357.
|
3 |
闫啸宇, 周思达, 卢宇, 等. 锂离子电池容量衰退机理与影响因素[J]. 北京航空航天大学学报, 2023, 49(6): 1402-1413. DOI: 10.13700/j.bh.1001-5965.2021.0458.
|
|
YAN X Y, ZHOU S D, LU Y, et al. Degradation mechanism and influencing factors on lithium-ion batteries[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(6): 1402-1413. DOI: 10.13700/j.bh.1001-5965.2021.0458.
|
4 |
FENG L, JIANG L H, LIU J L, et al. Dynamic overcharge investigations of lithium ion batteries with different state of health[J]. Journal of Power Sources, 2021, 507: 230262. DOI: 10.1016/j.jpowsour.2021.230262.
|
5 |
康健强, 龚智超, 钱春虎, 等. 锂离子电池在高脉冲工况下老化机理的分析与研究[J]. 电工电能新技术, 2023, 42(10): 35-45. DOI: 10.3969/j.issn.1001-3849.2005.03.003.
|
|
KANG J Q, GONG Z C, QIAN C H, et al. Analysis and research on aging mechanism of lithium-ion battery under high pulse current condition[J]. Advanced Technology of Electrical Engineering and Energy, 2023, 42(10): 35-45. DOI: 10.3969/j.issn.1001-3849.2005.03.003.
|
6 |
LI R, BAO L Y, CHEN L, et al. Accelerated aging of lithium-ion batteries: Bridging battery aging analysis and operational lifetime prediction[J]. Science Bulletin, 2023, 68(23): 3055-3079. DOI: 10.1016/j.scib.2023.10.029.
|
7 |
张若可, 郭永芳, 余湘媛, 等. 基于数据驱动的锂离子电池RUL预测综述[J]. 电源学报, 2023, 21(5): 182-190. DOI: 10.13234/j.issn.2095-2805.2023.5.182.
|
|
ZHANG R K, GUO Y F, YU X Y, et al. Review of data-driven RUL prediction for lithium-ion batteries[J]. Journal of Power Supply, 2023, 21(5): 182-190. DOI: 10.13234/j.issn.2095-2805.2023.5.182.
|
8 |
吴祎, 王友仁. 基于变分模态分解和高斯过程回归的锂离子电池剩余寿命预测方法[J]. 计算机与现代化, 2020(2): 83-88. DOI: 10.3969/j.issn.1006-2475.2020.02.017.
|
|
WU Y, WANG Y R. Remaining useful life prediction of lithium-ion batteries based on VMD and GPR algorithm[J]. Computer and Modernization, 2020(2): 83-88. DOI: 10.3969/j.issn.1006-2475.2020.02.017.
|
9 |
王志福, 罗崴, 闫愿, 等. 基于多方法融合的锂离子电池SOC-SOH联合估计[J]. 北京理工大学学报, 2023, 43(6): 575-584. DOI: 10.15918/j.tbit1001-0645.2022.148.
|
|
WANG Z F, LUO W, YAN Y, et al. Joint SOC-SOH estimation for Li-ion batteries based on multi-method fusion[J]. Transactions of Beijing Institute of Technology, 2023, 43(6): 575-584. DOI: 10.15918/j.tbit1001-0645.2022.148.
|
10 |
PENG J K, LUO J Y, HE H W, et al. An improved state of charge estimation method based on cubature Kalman filter for lithium-ion batteries[J]. Applied Energy, 2019, 253: 113520. DOI: 10.1016/j.apenergy.2019.113520.
|
11 |
李银, 王建峰, 莫伟权, 等. 基于数据驱动的锂离子电池剩余寿命预测综述[J/OL]. 电源学报, 1-16[2024-06-21]. http://kns.cnki.net/kcms/detail/12.1420.TM.20230613.1715.002.html.
|
|
LI Y, WANG J F, MO W Q, et al. A data-driven survey on the remaining useful life prediction of lithium-Ion batteries[J/OL]. Journal of Power Supply, 1-16[2024-06-21]. http://kns.cnki.net/kcms/detail/12.1420.TM.20230613.1715.002.html.
|
12 |
肖浩逸, 何晓霞, 梁佳佳, 等. 一种基于模态分解和机器学习的锂电池寿命预测方法[J]. 储能科学与技术, 2022, 11(12): 3999-4009. DOI: 10.19799/j.cnki.2095-4239.2022.0341.
|
|
XIAO H Y, HE X X, LIANG J J, et al. A lithium battery life-prediction method based on mode decomposition and machine learning[J]. Energy Storage Science and Technology, 2022, 11(12): 3999-4009. DOI: 10.19799/j.cnki.2095-4239.2022.0341.
|
13 |
何冰琛, 杨薛明, 王劲松, 等. 基于PCA-GPR的锂离子电池剩余使用寿命预测[J]. 太阳能学报, 2022, 43(5): 484-491. DOI: 10.19912/j.0254-0096.tynxb.2022-0422.
|
|
HE B C, YANG X M, WANG J S, et al. Prediction of remaining useful life of lithium-ion batteries based on PCA-GPR[J]. Acta Energiae Solaris Sinica, 2022, 43(5): 484-491. DOI: 10.19912/j.0254-0096.tynxb.2022-0422.
|
14 |
张洪生, 尚鑫磊. 基于DAE-BLS的锂离子电池剩余使用寿命预测方法[J/OL]. 计算机集成制造系统, 1-15[2024-06-21]. http://kns.cnki.net/kcms/detail/11.5946.TP.20230410.1518.022.html.
|
|
ZHANG H S, SHANG X L. A remaining useful life prediction method for lithium-Ion batteries based on DAE-BLS[J/OL]. Computer Integrated Manufacturing Systems, 1-15[2024-06-21]. http://kns.cnki.net/kcms/detail/11.5946.TP.20230410.1518.022.html.
|
15 |
崔显, 陈自强, 卢地华, 等. 基于KCC-PF的锂离子电池剩余使用寿命预测[J]. 装备环境工程, 2022, 19(4): 86-94.
|
|
CUI X, CHEN Z Q, LU D H, et al. Remaining useful life prediction of lithium-ion battery based on Kendall rank correlation coefficient particle filter[J]. Equipment Environmental Engineering, 2022, 19(4): 86-94.
|
16 |
邹红波, 柴延辉, 杨钦贺, 等. 基于混合ISSA-LSTM的锂离子电池剩余使用寿命预测[J]. 电力系统保护与控制, 2023, 51(19): 21-31. DOI: 10.19783/j.cnki.pspc.230297.
|
|
ZOU H B, CHAI Y H, YANG Q H, et al. Remaining useful life prediction of lithium-ion batteries based on hybrid ISSA-LSTM[J]. Power System Protection and Control, 2023, 51(19): 21-31. DOI: 10.19783/j.cnki.pspc.230297.
|
17 |
莫易敏, 陈佳浩, 叶鹏, 等. 基于多健康因子LSTM的电池容量估计方法[J/OL]. 电源学报, 1-13[2024-06-21]. http://kns.cnki.net/kcms/detail/12.1420.TM.20231204.1025.002.html.
|
|
MO Y M, CHEN J H, YE P, et al. Battery capacity estimation method based on multiple health factors LSTM[J/OL]. Journal of Power Supply, 1-13[2024-06-21]. http://kns.cnki.net/kcms/detail/12.1420.TM.20231204.1025.002.html.
|
18 |
尹杰, 刘博, 孙国兵, 等. 基于迁移学习和降噪自编码器-长短时间记忆的锂离子电池剩余寿命预测[J]. 电工技术学报, 2024, 39(1): 289-302. DOI: 10.19595/j.cnki.1000-6753.tces.221890.
|
|
YIN J, LIU B, SUN G B, et al. Transfer learning denoising autoencoder-long short term memory for remaining useful life prediction of Li-ion batteries[J]. Transactions of China Electrotechnical Society, 2024, 39(1): 289-302. DOI: 10.19595/j.cnki.1000-6753.tces.221890.
|
19 |
ANGELICA F, HYDRO R, SULISTIYA Z D, et al. DeepLyric: Predicting music emotions through LSTM-GRU hybrid models with regularization techniques[J]. Procedia Computer Science, 2023, 227: 973-980. DOI: 10.1016/j.procs.2023.10.606.
|
20 |
KAYA E, GORKEMLI B, AKAY B, et al. A review on the studies employing artificial bee colony algorithm to solve combinatorial optimization problems[J]. Engineering Applications of Artificial Intelligence, 2022, 115: 105311. DOI: 10.1016/j.engappai.2022. 105311.
|
21 |
朱子敬, 何利文. 基于ABC-LSTM-GRU的时间序列分解与预测模型[J]. 软件工程, 2024, 27(3): 58-62. DOI: 10. 19644/j.cnki.issn2096-1472.2024.003.012.
|
|
ZHU Z J, HE L W. Time series decomposition and prediction model based on ABC-LSTM-GRU[J]. Software Engineering, 2024, 27(3): 58-62. DOI: 10.19644/j.cnki.issn2096-1472.2024.003.012.
|
22 |
GONG Y D, ZHANG X Y, GAO D Z, et al. State-of-health estimation of lithium-ion batteries based on improved long short-term memory algorithm[J]. Journal of Energy Storage, 2022, 53: 105046. DOI: 10.1016/j.est.2022.105046.
|
23 |
LIU Y W, SUN J, SHANG Y L, et al. A novel remaining useful life prediction method for lithium-ion battery based on long short-term memory network optimized by improved sparrow search algorithm[J]. Journal of Energy Storage, 2023, 61: 106645. DOI: 10.1016/j.est.2023.106645.
|
24 |
郝可青, 吕志刚, 邸若海, 等. 基于鲸鱼算法优化长短时记忆神经网络的锂电池剩余寿命预测[J]. 科学技术与工程, 2022, 22(29): 12900-12908. DOI: 10.3969/j.issn.1671-1815.2022.29.025.
|
|
HAO K Q, LYU Z G, DI R H, et al. Remaining useful life prediction of lithium battery based on long short-term memory optimized by whale optimization algorithm[J]. Science Technology and Engineering, 2022, 22(29): 12900-12908. DOI: 10.3969/j.issn.1671-1815.2022.29.025.
|