储能科学与技术 ›› 2025, Vol. 14 ›› Issue (1): 77-89.doi: 10.19799/j.cnki.2095-4239.2024.0767
梅悦旎(), 屈雯洁, 程广玉, 向永贵, 陆海燕, 邵晓丹, 张益明, 王可
收稿日期:
2024-08-14
修回日期:
2024-08-26
出版日期:
2025-01-28
发布日期:
2025-02-25
通讯作者:
梅悦旎
E-mail:meiyueni@126.com
作者简介:
梅悦旎(1994—),女,博士,高级工程师,研究方向为锂离子电池关键材料与设计技术,E-mail:meiyueni@126.com。
基金资助:
Yueni MEI(), Wenjie QU, Guangyu CHENG, Yonggui XIANG, Haiyan LU, Xiaodan SHAO, Yiming ZHANG, Ke WANG
Received:
2024-08-14
Revised:
2024-08-26
Online:
2025-01-28
Published:
2025-02-25
Contact:
Yueni MEI
E-mail:meiyueni@126.com
摘要:
锂离子电池在首次充电过程中,负极表面形成固态电解质界面膜(SEI膜)的过程会不可逆地消耗电池体系中的活性锂含量,影响电池的能量密度和循环寿命,这一现象在高比能设计的电池中表现尤为明显。通过补锂技术额外补充活性锂是解决这一问题的有效手段。从工艺角度进行区分,当前补锂技术主要分为负极补锂与正极补锂,其中正极补锂技术因其安全性和电池制造工艺兼容性高而受到广泛关注。正极补锂技术主要是指在锂离子电池的正极中添加具有高不可逆容量的含锂化合物,即正极补锂添加剂/正极补锂材料。当前主流的正极补锂材料主要包含二元含锂化合物、三元含锂化合物和有机含锂化合物。此外,正极补锂也可以通过设计过嵌锂正极材料实现活性锂补偿。本文总结了当前基于正极的补锂技术与策略,综述了正极补锂技术的最新研究进展以及在提升锂离子电池首次效率、能量密度及循环寿命中的应用情况,对当前主流的正极补锂策略进行对比分析,并对未来正极补锂策略进一步实现产业化应用作出展望。
中图分类号:
梅悦旎, 屈雯洁, 程广玉, 向永贵, 陆海燕, 邵晓丹, 张益明, 王可. 锂离子电池正极补锂技术研究进展[J]. 储能科学与技术, 2025, 14(1): 77-89.
Yueni MEI, Wenjie QU, Guangyu CHENG, Yonggui XIANG, Haiyan LU, Xiaodan SHAO, Yiming ZHANG, Ke WANG. Recent progress of cathode prelithiation strategies for lithium ion batteries[J]. Energy Storage Science and Technology, 2025, 14(1): 77-89.
表1
不同正极补锂技术路线的对比"
正极补锂策略 | 典型代表材料 | 基本性质 | 补锂优势 | 存在的挑战 | (潜在)应用情况 |
---|---|---|---|---|---|
过锂化正极材料 | 过锂化设计的LiNi x Co y Mn1-x-y O2(NCM),LiNi1-x-y Co x Al y O2(NCA),Li1+x Mn2O4,Li1+x Mn1.5Ni0.5O4等材料 | 通过化学或电化学方法设计制备含有过量锂的“富锂”正极材料,电池总体电化学行为不变 | (1)过锂化正极材料在去锂化后,电化学体系中不残留惰性物质; (2)与NMP溶剂体系兼容性良好 | (1)过锂化设计容量偏低; (2)可进行过锂化设计的正极材料种类有限; (3)过锂化正极材料的制备会额外增加生产步骤 | 仅适用于可进行过锂化设计的正极材料体系,但过锂化正极材料需增加额外的设计制备步骤,在规模化应用中仍存在挑战 |
二元含锂化合物补锂剂 | LiN3、Li3N、Li2O、Li2O2、Li2S、Li2Se、LiF、Li3P等 | 理论补锂容量高于1000 mAh/g,金属/二元含锂化合物复合物理论补锂容量可达900 mAh/g | (1)理论补锂容量高; (2)分解产物主要为气体,成分单一 | (1)完全分解电位高,与主流正极材料体系不适配,需结合改性策略降低分解电位; (2)部分材料制备时需使用熔融锂和惰性气氛,不利于规模化工业制备 | 结合表面包覆、基于转化反应方法等制备改性二元含锂补锂材料,同时应考虑补锂剂分解产气排出的工艺方法及引入金属单质后分解残留等问题 |
三元含锂化合物补锂剂 | Li2NiO2、Li5FeO4、Li6CoO4、Li2MoO3、Li8ZrO6等 | 由固相反应法制备合成,补锂容量高于300 mAh/g,其中Li5FeO4材料理论补锂容量可达870 mAh/g | (1)制备成本较低,易于规模化生产制备; (2)分解电位区间与当前主流正极材料体系适配; (3)与NMP溶剂兼容性良好 | (1)残碱高,空气稳定性及导电性较差,需结合改性方法进行改善; (2)分解后在电池体系中残留惰性金属氧化物 | 已实现规模化应用的正极补锂方法,综合评估最为经济实惠的补锂技术路线,适用于对于总补锂量需求不高的电化学体系 |
有机含锂化合物补锂剂 | Li2C2O4、Li2C4O4、 Li2DHBN等 | 由液相法合成,其中Li2C4O4完全分解容量可达3845 mAh/g,具有“自牺牲”、无残留等特点 | (1)制备方法简单,稳定性好,具有批量制备潜力; (2)分解电位区间与主流正极材料体系兼容 | (1)本征导电性较差,需结合导电剂或催化剂的引入进行改善; (2)完全分解后产气量大,需采取后续排气措施减少产气对电池体系的不良影响 | 具备未来规模化应用的前景,补锂方法更加多样化,但仍面临将分解产气彻底排出电池体系等重要工艺问题 |
1 | LI M, LU J, CHEN Z W, et al. 30 years of lithium-ion batteries[J]. Advanced Materials, 2018: e1800561. DOI:10.1002/adma. 201800561. |
2 | ARMAND M, AXMANN P, BRESSER D, et al. Lithium-ion batteries–Current state of the art and anticipated developments[J]. Journal of Power Sources, 2020, 479: 228708. DOI:10.1016/j.jpowsour.2020.228708. |
3 | HOLTSTIEGE F, WILKEN A, WINTER M, et al. Running out of lithium? A route to differentiate between capacity losses and active lithium losses in lithium-ion batteries[J]. Physical Chemistry Chemical Physics, 2017, 19(38): 25905-25918. DOI:10.1039/C7CP05405J. |
4 | JIN L M, SHEN C, WU Q, et al. Pre-lithiation strategies for next-generation practical lithium-ion batteries[J]. Advanced Science, 2021, 8(12): e2005031. DOI:10.1002/advs.202005031. |
5 | ZHANG H Q, CHENG J, LIU H B, et al. Prelithiation: A critical strategy towards practical application of high-energy-density batteries[J]. Advanced Energy Materials, 2023, 13(27): 2300466. DOI:10.1002/aenm.202300466. |
6 | 田孟羽, 詹元杰, 闫勇, 等. 锂离子电池补锂技术[J]. 储能科学与技术, 2021, 10(3): 800-812. DOI: 10.19799/j.cnki.2095-4239. 2021. 0066. |
TIAN M Y, ZHAN Y J, YAN Y, et al. Replenishment technology of the lithium ion battery[J]. Energy Storage Science and Technology, 2021, 10(3): 800-812. DOI: 10.19799/j.cnki.2095-4239.2021.0066. | |
7 | 詹元杰. 正极补锂材料及其在锂离子电池中的应用[D]. 北京: 中国科学院大学(中国科学院物理研究所), 2018. |
ZHAN Y J. Lithium-supplementing material for positive electrode and its application in lithium-ion battery[D]. Beijing: University of Chinese Academy of Sciences(Institute of Physics CAS), 2018. | |
8 | 李子晨. 锂离子电池正极补锂添加剂的制备及其性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. DOI: 10.27061/d.cnki.ghgdu. 2020. 000828. |
LI Z C. Preparation and properties of lithium supplement additive for positive electrode of lithium ion battery[D]. Harbin: Harbin Institute of Technology, 2020. DOI: 10.27061/d.cnki.ghgdu. 2020. 000828. | |
9 | HUANG Z Y, DENG Z, ZHONG Y, et al. Progress and challenges of prelithiation technology for lithium-ion battery[J]. Carbon Energy, 2022, 4(6): 1107-1132. DOI:10.1002/cey2.256. |
10 | DOSE W M, BLAUWKAMP J, PIERNAS-MUÑOZ M J, et al. Liquid ammonia chemical lithiation: An approach for high-energy and high-voltage Si-Graphite|Li1+ xNi0.5Mn1.5O4 Li-ion batteries[J]. ACS Applied Energy Materials, 2019, 2(7): 5019-5028. DOI:10.1021/acsaem.9b00695. |
11 | SUN Y M, LEE H W, SEH Z W, et al. High-capacity battery cathode prelithiation to offset initial lithium loss[J]. Nature Energy, 2016, 1(1): 15008. DOI:10.1038/nenergy.2015.8. |
12 | KANG K, CHEN C H, HWANG B J, et al. Synthesis, electrochemical properties, and phase stability of Li2NiO2 with the Immm structure[J]. Chemistry of Materials, 2004, 16(13): 2685-2690. DOI:10.1021/cm049922h. |
13 | JOHNSON C S, KANG S H, VAUGHEY J T, et al. Li2O removal from Li5FeO4: A cathode precursor for lithium-ion batteries[J]. Chemistry of Materials, 2010, 22(3): 1263-1270. DOI:10.1021/cm902713m. |
14 | SHEN B L, SARKODIE B, ZHANG L, et al. Self-sacrificing lithium source with high electrochemical activity and water oxygen stability and its application in Si-C//S battery[J]. Energy Storage Materials, 2022, 45: 687-695. DOI:10.1016/j.ensm.2021.12.014. |
15 | DOSE W M, KIM S, LIU Q, et al. Dual functionality of over-lithiated NMC for high energy silicon-based lithium-ion batteries[J]. Journal of Materials Chemistry A, 2021, 9(21): 12818-12829. DOI:10.1039/D1TA01290H. |
16 | GABRIELLI G, MARINARO M, MANCINI M, et al. A new approach for compensating the irreversible capacity loss of high-energy Si/C|LiNi0.5Mn1.5O4 lithium-ion batteries[J]. Journal of Power Sources, 2017, 351: 35-44. DOI:10.1016/j.jpowsour. 2017. 03.051. |
17 | ARAVINDAN V, ARUN N, SHUBHA N, et al. Overlithiated Li1+ x Ni0.5Mn1.5O4 in all one dimensional architecture with conversion type α-Fe2O3: A new approach to eliminate irreversible capacity loss[J]. Electrochimica Acta, 2016, 215: 647-651. DOI:10.1016/j.electacta.2016.08.078. |
18 | SHANMUKARAJ D, GRUGEON S, LARUELLE S, et al. Sacrificial salts: Compensating the initial charge irreversibility in lithium batteries[J]. Electrochemistry Communications, 2010, 12(10): 1344-1347. DOI:10.1016/j.elecom.2010.07.016. |
19 | PARK K, YU B C, GOODENOUGH J B. Li3N as a cathode additive for high-energy-density lithium-ion batteries[J]. Advanced Energy Materials, 2016, 6(10): 1502534. DOI:10.1002/aenm. 201502534. |
20 | SUN Y M, LI Y B, SUN J, et al. Stabilized Li3N for efficient battery cathode prelithiation[J]. Energy Storage Materials, 2017, 6: 119-124. DOI:10.1016/j.ensm.2016.10.004. |
21 | BIAN X F, PANG Q, WEI Y J, et al. Dual roles of Li3N as an electrode additive for Li-excess layered cathode materials: A Li-ion sacrificial salt and electrode-stabilizing agent[J]. Chemistry – A European Journal, 2018, 24(52): 13815-13820. DOI:10.1002/chem.201801809. |
22 | QIAO Y, YANG H J, CHANG Z, et al. A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent[J]. Nature Energy, 2021, 6: 653-662. DOI:10. 1038/s41560-021-00839-0. |
23 | CHEN Y L, ZHU Y L, ZUO W H, et al. Implanting transition metal into Li2 O-based cathode prelithiation agent for high-energy-density and long-life Li-ion batteries[J]. Angewandte Chemie (International Ed), 2024, 63(5): e202316112. DOI:10.1002/anie. 202316112. |
24 | BIE Y T, YANG J, WANG J L, et al. Li2O2 as a cathode additive for the initial anode irreversibility compensation in lithium-ion batteries[J]. Chemical Communications, 2017, 53(59): 8324-8327. DOI:10.1039/c7cc04646d. |
25 | ZHANG L H, JEONG S, REINSMA N, et al. Decomposition of Li2O2 as the cathode prelithiation additive for lithium-ion batteries without an additional catalyst and the initial performance investigation[J]. Journal of the Electrochemical Society, 2021, 168(12): 120520. DOI:10.1149/1945-7111/ac3e46. |
26 | SUN Y M, LEE H W, SEH Z W, et al. Lithium sulfide/metal nanocomposite as a high-capacity cathode prelithiation material[J]. Advanced Energy Materials, 2016, 6(12): 1600154. DOI:10. 1002/aenm.201600154. |
27 | ZHAN Y J, YU H L, BEN L B, et al. Using Li2S to compensate for the loss of active lithium in Li-ion batteries[J]. Electrochimica Acta, 2017, 255: 212-219. DOI:10.1016/j.electacta.2017.09.167. |
28 | FU Y P, XIE Y, ZENG L Y, et al. Li2Se as cathode additive to prolong the next generation high energy lithium-ion batteries[J]. Surfaces and Interfaces, 2023, 36: 102610. DOI:10.1016/j.surfin. 2022.102610. |
29 | PAN Y J, QI X Q, DU H R, et al. Li2Se as a cathode prelithiation additive for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2023, 15(15): 18763-18770. DOI:10.1021/acsami. 2c21312. |
30 | SUN Y M, LEE H W, ZHENG G Y, et al. In situ chemical synthesis of lithium fluoride/metal nanocomposite for high capacity prelithiation of cathodes[J]. Nano Letters, 2016, 16(2): 1497-1501. DOI:10.1021/acs.nanolett.5b05228. |
31 | DU J M, WANG W Y, ENG A Y S, et al. Metal/LiF/Li2O nanocomposite for battery cathode prelithiation: Trade-off between capacity and stability[J]. Nano Letters, 2020, 20(1): 546-552. DOI:10.1021/acs.nanolett.9b04278. |
32 | WANG X Y, LIU C, ZHANG S J, et al. Dual-functional cathodic prelithiation reagent of Li3P in lithium-ion battery for compensating initial capacity loss and enhancing safety[J]. ACS Applied Energy Materials, 2021, 4(5): 5246-5254. DOI:10.1021/acsaem.1c00773. |
33 | KIM M G, CHO J. Air stable Al2O3-coated Li2NiO2 cathode additive as a surplus current consumer in a Li-ion cell[J]. Journal of Materials Chemistry, 2008, 18(48): 5880-5887. DOI:10.1039/B814161D. |
34 | PARK H, YOON T, KIM Y U, et al. Li2NiO2 as a sacrificing positive additive for lithium-ion batteries[J]. Electrochimica Acta, 2013, 108: 591-595. DOI:10.1016/j.electacta.2013.06.117. |
35 | SU X, LIN C K, WANG X P, et al. A new strategy to mitigate the initial capacity loss of lithium ion batteries[J]. Journal of Power Sources, 2016, 324: 150-157. DOI:10.1016/j.jpowsour. 2016. 05.063. |
36 | LI J, ZHU B, LI S H, et al. Air-stable Li6CoO4@Li5FeO4 pre-lithiation reagent in cathode enabling high performance lithium-ion batteries[J]. Journal of the Electrochemical Society, 2021, 168(8): 080510. DOI:10.1149/1945-7111/ac18e1. |
37 | DOSE W M, VILLA C, HU X B, et al. Beneficial effect of Li5FeO4 lithium source for Li-ion batteries with a layered NMC cathode and Si anode[J]. Journal of the Electrochemical Society, 2020, 167(16): 160543. DOI:10.1149/1945-7111/abd1ef. |
38 | NOH M, CHO J. Role of Li6CoO4 cathode additive in Li-ion cells containing low coulombic efficiency anode material[J]. Journal of the Electrochemical Society, 2012, 159(8): A1329-A1334. DOI:10.1149/2.085208jes. |
39 | PARK M S, LIM Y G, KIM J H, et al. A novel lithium-doping approach for an advanced lithium ion capacitor[J]. Advanced Energy Materials, 2011, 1(6): 1002-1006. DOI:10.1002/aenm. 201100270. |
40 | KIM M, SPINDLER B D, DONG L F, et al. Li8ZrO6 as a pre-lithiation additive for lithium-ion batteries[J]. ACS Applied Energy Materials, 2022, 5(11): 14433-14444. DOI:10.1021/acsaem.2c02980. |
41 | SOLCHENBACH S, WETJEN M, PRITZL D, et al. Lithium oxalate as capacity and cycle-life enhancer in LNMO/graphite and LNMO/SiG full cells[J]. Journal of the Electrochemical Society, 2018, 165(3): A512-A524. DOI:10.1149/2.0611803jes. |
42 | FAN M, MENG Q H, CHANG X, et al. In situ electrochemical regeneration of degraded LiFePO4 electrode with functionalized prelithiation separator[J]. Advanced Energy Materials, 2022, 12(18): 2103630. DOI:10.1002/aenm.202103630. |
43 | ARNAIZ M, SHANMUKARAJ D, CARRIAZO D, et al. A transversal low-cost pre-metallation strategy enabling ultrafast and stable metal ion capacitor technologies[J]. Energy & Environmental Science, 2020, 13(8): 2441-2449. DOI:10.1039/D0EE00351D. |
44 | LIU G X, WAN W, NIE Q, et al. Controllable long-term lithium replenishment for enhancing energy density and cycle life of lithium-ion batteries[J]. Energy & Environmental Science, 2024, 17(3): 1163-1174. DOI:10.1039/D3EE03740A. |
45 | JEŻOWSKI P, CROSNIER O, DEUNF E, et al. Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt[J]. Nature Materials, 2018, 17(2): 167-173. DOI:10.1038/nmat5029. |
[1] | 曹巍, 陈飞, 孔祥栋, 朱志成, 韩雪冰, 卢兰光, 郑岳久. 锂离子电池极片涂布工艺研究进展[J]. 储能科学与技术, 2025, 14(1): 90-103. |
[2] | 张建茹, 王其钰, 李庆浩, 张献英, 王碧童, 禹习谦, 李泓. 锂离子电池失效分析中的几种物性表征技术及其应用[J]. 储能科学与技术, 2025, 14(1): 286-309. |
[3] | 邢远秀, 刘颛玮, 邢玉峰, 王文波. BDD-DETR:高效感知小目标的锂电池表面缺陷检测[J]. 储能科学与技术, 2025, 14(1): 370-379. |
[4] | 李建萱, 林琛, 周忠凯. 基于减平均优化算法与双向长短期记忆网络的锂离子电池健康状态估算[J]. 储能科学与技术, 2025, 14(1): 358-369. |
[5] | 叶石丰, 洪朝锋, 綦晓, 吴伟雄, 谭子健, 周奇, 张兆阳. 基于EEMD-GRU-NN锂离子电池表面温度预测方法研究[J]. 储能科学与技术, 2025, 14(1): 380-387. |
[6] | 刘通, 杨瑰婷, 毕辉, 梅悦旎, 刘硕, 宫勇吉, 罗文雷. 高能量密度与高功率密度兼顾型锂离子电池研究现状与展望[J]. 储能科学与技术, 2025, 14(1): 54-76. |
[7] | 李可, 朱顺兵, 陶致格, 王赫. 复合水系灭火剂抑制磷酸铁锂电池火灾实验[J]. 储能科学与技术, 2025, 14(1): 140-151. |
[8] | 张文婧, 肖伟, 伊亚辉, 钱利勤. 锂离子电池安全改性策略研究进展[J]. 储能科学与技术, 2025, 14(1): 104-123. |
[9] | 刘勇, 于怀汶, 刘大鹏, 穆勇, 王瀛洲, 张秀宇. 基于ABC-LSTM模型的锂离子电池剩余使用寿命预测[J]. 储能科学与技术, 2025, 14(1): 331-345. |
[10] | 陈峥, 彭月, 胡竞元, 申江卫, 肖仁鑫, 夏雪磊. 基于短期充电数据和增强鲸鱼优化算法的锂离子电池容量预测[J]. 储能科学与技术, 2025, 14(1): 319-330. |
[11] | 孙中麟, 李嘉波, 田迪, 王志璇, 邢晓静. 基于COA-LSTM和VMD的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2024, 13(9): 3254-3265. |
[12] | 陆继忠, 彭思敏, 李晓宇. 基于多特征量分析和LSTM-XGBoost模型的锂离子电池SOH估计方法[J]. 储能科学与技术, 2024, 13(9): 2972-2982. |
[13] | 胡雪峰, 常先雷, 刘肖肖, 徐威, 张文彬. 适用于宽温度范围的锂离子电池SOC估计方法[J]. 储能科学与技术, 2024, 13(9): 2983-2994. |
[14] | 沈思远, 刘亚坤, 罗栋煌, 李雨珺, 郝伟. 储能锂离子电池模组暂态过电压防护设计与电路研发[J]. 储能科学与技术, 2024, 13(9): 3277-3286. |
[15] | 陈媛, 章思源, 蔡宇晶, 黄小贺, 刘炎忠. 融合多项式特征扩展与CNN-Transformer模型的锂电池SOH估计[J]. 储能科学与技术, 2024, 13(9): 2995-3005. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||