储能科学与技术 ›› 2025, Vol. 14 ›› Issue (1): 54-76.doi: 10.19799/j.cnki.2095-4239.2024.0611
刘通1,3(), 杨瑰婷1, 毕辉4, 梅悦旎1, 刘硕1, 宫勇吉3, 罗文雷2(
)
收稿日期:
2024-07-03
修回日期:
2024-07-18
出版日期:
2025-01-28
发布日期:
2025-02-25
通讯作者:
罗文雷
E-mail:liutone@126.com;wenleiluo@163.com
作者简介:
刘通(1993—),男,博士研究生,工程师,研究方向为锂离子电池,E-mail:liutone@126.com;
Tong LIU1,3(), Guiting YANG1, Hui BI4, Yueni MEI1, Shuo LIU1, Yongji GONG3, Wenlei LUO2(
)
Received:
2024-07-03
Revised:
2024-07-18
Online:
2025-01-28
Published:
2025-02-25
Contact:
Wenlei LUO
E-mail:liutone@126.com;wenleiluo@163.com
摘要:
锂离子电池已成为当前应用最广泛的储能器件,能量密度、功率密度是评价其性能的两个重要参数。然而,高能量密度与高功率密度存在矛盾,有着“此消彼长”的现象。发展高能量密度和高功率密度兼顾型锂离子电池(简称双高型锂离子电池)对于进一步满足高效能、现代化装备(如特种装备、电动无人机等)具有重要意义。关键新材料是决定双高型锂离子电池性能的基本和核心因素,电池性能的跃升需要从储能机制、新材料制备技术出发。本文首先介绍了双高型锂离子电池的定义及关键性能指标,随后综述了双高型锂离子电池关键正极、负极材料及其改性策略等方面的研究进展,以及不同类型的电解质对锂离子电池性能的影响,并对双高型锂离子电池的设计和研发进行了讨论,总结了研究现状、面临的挑战和未来发展趋势,为下一代双高型锂离子电池的设计开发提供了新思路。
中图分类号:
刘通, 杨瑰婷, 毕辉, 梅悦旎, 刘硕, 宫勇吉, 罗文雷. 高能量密度与高功率密度兼顾型锂离子电池研究现状与展望[J]. 储能科学与技术, 2025, 14(1): 54-76.
Tong LIU, Guiting YANG, Hui BI, Yueni MEI, Shuo LIU, Yongji GONG, Wenlei LUO. Recent progress in high-energy and high-power lithium-ion batteries[J]. Energy Storage Science and Technology, 2025, 14(1): 54-76.
1 | LI M Y, LIU T, SHI Z, et al. Dense all-electrochem-active electrodes for all-solid-state lithium batteries[J]. Advanced Materials, 2021, 33(26): 2008723. DOI: 10.1002/adma.202008723. |
2 | CHEN G X, SUN X Z, ZHANG X, et al. Progress of high-power lithium-ion batteries [J]. 工程科学学报, 2022, 44(4): 612-624. |
3 | 刘通, 朱文豪, 梅悦旎, 等. 小型SAR卫星用双高特性锂离子电池技术[J]. 上海航天(中英文), 2022, 39(3): 138-144, 152. DOI: 10.19328/j.cnki.2096-8655.2022.03.019. |
LIU T, ZHU W H, MEI Y N, et al. High specific energy and high power lithium-ion battery technologies for small SAR satellites[J]. Aerospace Shanghai (Chinese & English), 2022, 39(3): 138-144, 152. DOI: 10.19328/j.cnki.2096-8655.2022.03.019. | |
4 | WANG C Y, YANG C P, ZHENG Z J. Toward practical high-energy and high-power lithium battery anodes: Present and future[J]. Advanced Science, 2022, 9(9): e2105213. DOI: 10.1002/advs.202105213. |
5 | GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: A perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176. DOI: 10.1021/ja3091438. |
6 | GAO H, WU Q, HU Y X, et al. Revealing the rate-limiting Li-ion diffusion pathway in ultrathick electrodes for Li-ion batteries[J]. The Journal of Physical Chemistry Letters, 2018, 9(17): 5100-5104. DOI: 10.1021/acs.jpclett.8b02229. |
7 | WU J Y, JU Z Y, ZHANG X, et al. Gradient design for high-energy and high-power batteries[J]. Advanced Materials, 2022, 34(29): 2202780. DOI: 10.1002/adma.202202780. |
8 | ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. DOI: 10.1038/451652a. |
9 | BARD A J, FAULKNER L R, WHITE H S. Electrochemical methods: Fundamentals and applications[M]. 3rd ed. WILEY, 2022. |
10 | 王伟. 智能电池: 能源互联网的关键环节——访中国工程院院士吴锋[J]. 能源评论, 2021(12): 44-47. |
WANG W. Smart battery: The key link of energy Internet—Interview with wu Feng, academician of China academy of engineering[J]. Energy Review, 2021(12): 44-47. | |
11 | SUN Y K, CHEN Z H, NOH H J, et al. Nanostructured high-energy cathode materials for advanced lithium batteries[J]. Nature Materials, 2012, 11(11): 942-947. DOI: 10.1038/nmat3435. |
12 | AMICI J, ASINARI P, AYERBE E, et al. A roadmap for transforming research to invent the batteries of the future designed within the European large scale research initiative BATTERY 2030+[J]. Advanced Energy Materials, 2022, 12(17): 2102785. DOI: 10.1002/aenm.202102785. |
13 | DECHENT P, EPP A, JÖST D, et al. ENPOLITE: Comparing lithium-ion cells across energy, power, lifetime, and temperature[J]. ACS Energy Letters, 2021, 6(6): 2351-2355. DOI: 10.1021/acsenergylett.1c00743. |
14 | XU J J, CAI X Y, CAI S M, et al. High-energy lithium-ion batteries: Recent progress and a promising future in applications[J]. Energy & Environmental Materials, 2023, 6(5): e12450. DOI: 10.1002/eem2.12450. |
15 | PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 1997, 144(4): 1188. DOI: 10.1149/1.1837571. |
16 | ROMMEL S M, SCHALL N, BRÜNIG C, et al. Challenges in the synthesis of high voltage electrode materials for lithium-ion batteries: A review on LiNiPO4[J]. Monatshefte Für Chemie - Chemical Monthly, 2014, 145(3): 385-404. DOI: 10.1007/s00706-013-1134-0. |
17 | RAMAR V, BALAYA P. Enhancing the electrochemical kinetics of high voltage olivine LiMnPO4 by isovalent co-doping[J]. Physical Chemistry Chemical Physics, 2013, 15(40): 17240-17249. DOI: 10.1039/c3cp52311j. |
18 | WHEATCROFT L, TRAN T D, ÖZKAYA D, et al. Visualization of the delithiation mechanisms in high-voltage battery material LiCoPO4[J]. ACS Applied Energy Materials, 2022, 5(1): 196-206. DOI: 10.1021/acsaem.1c02742. |
19 | WU X C, ROHMAN F, MELEDINA M, et al. Analysis of the effects of different carbon coating strategies on structure and electrochemical behavior of LiCoPO4 material as a high-voltage cathode electrode for lithium ion batteries[J]. Electrochimica Acta, 2018, 279: 108-117. DOI: 10.1016/j.electacta.2018.05.067. |
20 | ALLEN J L, JOW T R, WOLFENSTINE J. Improved cycle life of Fe-substituted LiCoPO4[J]. Journal of Power Sources, 2011, 196(20): 8656-8661. DOI: 10.1016/j.jpowsour.2011.06.057. |
21 | JANG I C, LIM H H, LEE S B, et al. Preparation of LiCoPO4 and LiFePO4 coated LiCoPO4 materials with improved battery performance[J]. Journal of Alloys and Compounds, 2010, 497(1/2): 321-324. DOI: 10.1016/j.jallcom.2010.03.055. |
22 | SREEDEEP S, NATARAJAN S, ARAVINDAN V. Recent advancements in LiCoPO4 cathodes using electrolyte additives[J]. Current Opinion in Electrochemistry, 2022, 31: 100868. DOI: 10.1016/j.coelec.2021.100868. |
23 | ESHETU G G, ZHANG H, JUDEZ X, et al. Production of high-energy Li-ion batteries comprising silicon-containing anodes and insertion-type cathodes[J]. Nature Communications, 2021, 12(1): 5459. DOI: 10.1038/s41467-021-25334-8. |
24 | KIM U H, KUO L Y, KAGHAZCHI P, et al. Quaternary layered Ni-rich NCMA cathode for lithium-ion batteries[J]. ACS Energy Letters, 2019, 4(2): 576-582. DOI: 10.1021/acsenergylett.8b02499. |
25 | CHEN Y B, SONG S L, ZHANG X Q, et al. The challenges, solutions and development of high energy Ni-rich NCM/NCA LiB cathode materials[J]. Journal of Physics: Conference Series, 2019, 1347(1): 012012. DOI: 10.1088/1742-6596/1347/1/012012. |
26 | SUN Y K, MYUNG S T, PARK B C, et al. High-energy cathode material for long-life and safe lithium batteries[J]. Nature Materials, 2009, 8(4): 320-324. DOI: 10.1038/nmat2418. |
27 | NOH H J, YOUN S, YOON C S, et al. Comparison of the structural and electrochemical properties of layered Li[Nix Coy Mnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries[J]. Journal of Power Sources, 2013, 233: 121-130. DOI: 10.1016/j.jpowsour.2013.01.063. |
28 | LIU W, OH P, LIU X E, et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries[J]. Angewandte Chemie (International Ed), 2015, 54(15): 4440-4457. DOI: 10.1002/anie.201409262. |
29 | CHENG Y, SUN Y, CHU C T, et al. Stabilizing effects of atomic Ti doping on high-voltage high-nickel layered oxide cathode for lithium-ion rechargeable batteries[J]. Nano Research, 2022, 15(5): 4091-4099. DOI: 10.1007/s12274-021-4035-2. |
30 | BINDER J O, CULVER S P, PINEDO R, et al. Investigation of fluorine and nitrogen as anionic dopants in nickel-rich cathode materials for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(51): 44452-44462. DOI: 10.1021/acsami. 8b16049. |
31 | ZHU L, LIU Y, WU W Y, et al. Surface fluorinated LiNi0.8Co0.15Al0.05O2 as a positive electrode material for lithium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(29): 15156-15162. DOI: 10.1039/C5TA02529J. |
32 | ZHAO B, SI J, CAO C H, et al. Enhanced electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathode by reducing lithium residue with low-temperature fluorination treatment[J]. Solid State Ionics, 2019, 339: 114998. DOI: 10.1016/j.ssi.2019.06.006. |
33 | LEE S H, YOON C S, AMINE K, et al. Improvement of long-term cycling performance of Li[Ni0.8Co0.15Al0.05]O2 by AlF3 coating[J]. Journal of Power Sources, 2013, 234: 201-207. DOI: 10.1016/j.jpowsour.2013.01.045. |
34 | QIU Z P, LIU Z, FU X J, et al. Improving the cycling performance of LiNi0.8Co0.15Al0.05O2 cathode materials via zirconium and fluorine co-substitution[J]. Journal of Alloys and Compounds, 2019, 806: 136-145. DOI: 10.1016/j.jallcom.2019.07.230. |
35 | JIN S-J, SEO J-S, NA B-K. Effect of MgF2 surface modification for LiNi0.8Co0.15Al0.05O2 cathode material on Improving electrochemical characteristics [J]. Korean Chemical Engineering Research, 2020, 58(1): 52-58. |
36 | WANG B, ZHANG F L, ZHOU X N, et al. Which of the nickel-rich NCM and NCA is structurally superior as a cathode material for lithium-ion batteries?[J]. Journal of Materials Chemistry A, 2021, 9(23): 13540-13551. DOI: 10.1039/D1TA01128F. |
37 | KALLURI S, CHA H, KIM J, et al. Building high-rate nickel-rich cathodes by self-organization of structurally stable macrovoid[J]. Advanced Science, 2020, 7(7): 1902844. DOI: 10.1002/advs.201902844. |
38 | KIM J, LEE H, CHA H, et al. Prospect and reality of Ni-rich cathode for commercialization[J]. Advanced Energy Materials, 2018, 8(6): 1702028. DOI: 10.1002/aenm.201702028. |
39 | THACKERAY M M, KANG S H, JOHNSON C S, et al. Li2MnO3- stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries[J]. Journal of Materials Chemistry, 2007, 17(30): 3112-3125. DOI: 10.1039/B702425H. |
40 | ZHENG J M, GU M, GENC A, et al. Mitigating voltage fade in cathode materials by improving the atomic level uniformity of elemental distribution[J]. Nano Letters, 2014, 14(5): 2628-2635. DOI: 10.1021/nl500486y. |
41 | LI Y, BAI Y, BI X X, et al. An effectively activated hierarchical nano-/ microspherical Li1.2Ni0.2Mn0.6O2 cathode for long-life and high-rate lithium-ion batteries[J]. ChemSusChem, 2016, 9(7): 728-735. DOI: 10.1002/cssc.201501548. |
42 | ZUO Y X, LI B, JIANG N, et al. A high-capacity O 2 -type Li-rich cathode material with a single-layer Li2MnO3 superstructure[J]. Advanced Materials, 2018, 30(16): e1707255. DOI: 10.1002/adma.201707255. |
43 | SHANG H F, ZUO Y X, SHEN F R, et al. O 2 -type Li0.78[Li0.24Mn0.76]O2 nanowires for high-performance lithium-ion battery cathode[J]. Nano Letters, 2020, 20(8): 5779-5785. DOI: 10.1021/acs.nanolett.0c01640. |
44 | CAI M Z, DONG Y H, XIE M, et al. Stalling oxygen evolution in high-voltage cathodes by lanthurization[J]. Nature Energy, 2023, 8: 159-168. DOI: 10.1038/s41560-022-01179-3. |
45 | KUNDURACI M, AMATUCCI G G. Synthesis and characterization of nanostructured 4.7 V LixMn1.5Ni0.5O4 spinels for high-power lithium-ion batteries[J]. Journal of the Electrochemical Society, 2006, 153(7): A1345. DOI: 10.1149/1.2198110. |
46 | MANTHIRAM A, CHEMELEWSKI K, LEE E S. A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries[J]. Energy & Environmental Science, 2014, 7(4): 1339-1350. DOI: 10.1039/C3EE42981D. |
47 | LIU G Q, WEN L, LIU Y M. Spinel LiNi0.5Mn1.5O4 and its derivatives as cathodes for high-voltage Li-ion batteries[J]. Journal of Solid State Electrochemistry, 2010, 14(12): 2191-2202. DOI: 10.1007/s10008-010-1061-5. |
48 | KIM J H, MYUNG S T, YOON C S, et al. Comparative study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures: Fd3̄m and P4332[J]. Chemistry of Materials, 2004, 16(5): 906-914. DOI: 10.1021/cm035050s. |
49 | HWANG T, LEE J K, MUN J, et al. Surface-modified carbon nanotube coating on high-voltage LiNi0.5Mn1.5O4 cathodes for lithium ion batteries[J]. Journal of Power Sources, 2016, 322: 40-48. DOI: 10.1016/j.jpowsour.2016.04.118. |
50 | LU D S, XU M Q, ZHOU L, et al. Failure mechanism of graphite/LiNi0.5Mn1.5O4 cells at high voltage and elevated temperature[J]. Journal of the Electrochemical Society, 2013, 160(5): A3138-A3143. DOI: 10.1149/2.022305jes. |
51 | KIM J H, PIECZONKA N P W, LI Z C, et al. Understanding the capacity fading mechanism in LiNi0.5Mn1.5O4/graphite Li-ion batteries[J]. Electrochimica Acta, 2013, 90: 556-562. DOI: 10.1016/j.electacta.2012.12.069. |
52 | WU H M, BELHAROUAK I, DENG H, et al. Development of LiNi0.5Mn1.5O4/Li4Ti5O12 system with long cycle life[J]. Journal of the Electrochemical Society, 2009, 156(12): A1047. DOI: 10.1149/1.3240197. |
53 | MIZUSHIMA K, JONES P C, WISEMAN P J, et al. LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density[J]. Materials Research Bulletin, 1980, 15(6): 783-789. DOI: 10.1016/0025-5408(80)90012-4. |
54 | DU PASQUIER A, PLITZ I, MENOCAL S, et al. A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications[J]. Journal of Power Sources, 2003, 115(1): 171-178. DOI: 10.1016/S0378-7753(02)00718-8. |
55 | REIMERS J N, DAHN J R. Electrochemical and in situ X-Ray diffraction studies of lithium intercalation in LixCoO2[J]. Journal of the Electrochemical Society, 1992, 139(8): 2091-2097. DOI: 10.1149/1.2221184. |
56 | WANG K, WAN J J, XIANG Y X, et al. Recent advances and historical developments of high voltage lithium cobalt oxide materials for rechargeable Li-ion batteries[J]. Journal of Power Sources, 2020, 460: 228062. DOI: 10.1016/j.jpowsour. 2020.228062. |
57 | SHEN B, LIU Q Q, WANG L G, et al. Mixed lithium ion and electron conducting LiAlPO3.93F1.07-coated LiCoO2 cathode with improved electrochemical performance[J]. Electrochemistry Communications, 2017, 83: 106-109. DOI: 10.1016/j.elecom. 2017.09.002. |
58 | YANO A, SHIKANO M, UEDA A, et al. LiCoO2 degradation behavior in the high-voltage phase transition region and improved reversibility with surface coating[J]. Journal of the Electrochemical Society, 2016, 164(1): A6116-A6122. DOI: 10.1149/2.0181701jes. |
59 | CHO J, KIM Y W, KIM B, et al. A breakthrough in the safety of lithium secondary batteries by coating the cathode material with AlPO4 nanoparticles[J]. Angewandte Chemie (International Ed), 2003, 42(14): 1618-1621. DOI: 10.1002/anie.200250452. |
60 | YAMADA A, CHUNG S C, HINOKUMA K. Optimized LiFePO4 for lithium battery cathodes[J]. ChemInform, 2001, 32(29): 17. DOI: 10.1002/chin.200129017. |
61 | HOU Y, CHANG K, LI B, et al. Highly[010]-oriented self-assembled LiCoPO4/C nanoflakes as high-performance cathode for lithium ion batteries[J]. Nano Research, 2018, 11(5): 2424-2435. DOI: 10.1007/s12274-017-1864-0. |
62 | YI T F, LI C Y, ZHU Y R, et al. Electrochemical intercalation kinetics of lithium ions for spinel LiNi0.5Mn1.5O4 cathode material[J]. Russian Journal of Electrochemistry, 2010, 46(2): 227-232. DOI: 10.1134/S1023193510020151. |
63 | NITTA N, WU F X, LEE J T, et al. Li-ion battery materials: Present and future[J]. Materials Today, 2015, 18(5): 252-264. DOI: 10.1016/j.mattod.2014.10.040. |
64 | 王立超, 张晓虎, 张熊, 等. 高功率锂离子电池负极材料研究进展[J]. 电源技术, 2021, 45(9): 1213-1215. DOI: 10.3969/j.issn.1002-087X.2021.09.031. |
WANG L C, ZHANG X H, ZHANG X, et al. Review of anode materials for high-power lithium-ion battery[J]. Chinese Journal of Power Sources, 2021, 45(9): 1213-1215. DOI: 10.3969/j.issn.1002-087X.2021.09.031. | |
65 | 孙德旺, 蒋必志, 袁涛, 等. 钛铌氧化物用于锂离子电池负极的研究进展[J]. 储能科学与技术, 2021, 10(6): 2127-2143. DOI: 10.19799/j.cnki.2095-4239.2021.0137. |
SUN D W, JIANG B Z, YUAN T, et al. Research progress of titanium niobium oxide used as anode of lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(6): 2127-2143. DOI: 10.19799/j.cnki.2095-4239.2021.0137. | |
66 | 丁晓博, 黄倩晖, 熊训辉. 锂离子电池快充石墨负极研究与应用[J]. 物理化学学报, 2022, 38(11): 95-110. |
DING X B, HUANG Q H, XIONG X H. Research and application of fast-charging graphite anodes for lithium-ion batteries[J]. Acta Physico-Chimica Sinica, 2022, 38(11): 95-110. | |
67 | BAO C G, LIU Z F, YANG Z, et al. Constructing a boron-doped graphite anode with an accelerated Li+ diffusion dynamics for practical high-rate Li-ion batteries[J]. Electrochimica Acta, 2023, 463: 142821. DOI: 10.1016/j.electacta.2023.142821. |
68 | HE J H, MENG J K, HUANG Y H. Challenges and recent progress in fast-charging lithium-ion battery materials[J]. Journal of Power Sources, 2023, 570: 232965. DOI: 10.1016/j.jpowsour. 2023.232965. |
69 | ZHANG C Y, ZHONG X M, CHEN P, et al. Facile synthesis of porous graphite by calcium carbide and nitrogen gas for lithium-ion batteries[J]. Journal of Energy Storage, 2023, 66: 107386. DOI: 10.1016/j.est.2023.107386. |
70 | 廖雅赟, 周峰, 张颖曦, 等. 锂离子电池快充石墨负极材料研究进展[J]. 储能科学与技术, 2024, 13(1): 130-142. DOI: 10.19799/j.cnki.2095-4239.2023.0777. |
LIAO Y Y, ZHOU F, ZHANG Y X, et al. Research progress on fast-charging graphite anode materials for lithium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(1): 130-142. DOI: 10.19799/j.cnki.2095-4239.2023.0777. | |
71 | PARAKNOWITSCH J P, THOMAS A. Doping carbons beyond nitrogen: An overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications[J]. Energy & Environmental Science, 2013, 6(10): 2839-2855. DOI: 10.1039/C3EE41444B. |
72 | 孙方静, 韦连梅, 张家玮, 等. 锂离子电池快充石墨负极材料的研究进展及评价方法[J]. 储能科学与技术, 2017, 6(6): 1223-1230. DOI: 10.12028/j.issn.2095-4239.2017.0098. |
SUN F J, WEI L M, ZHANG J W, et al. Research progress and evaluation methods of lithium-ion battery fast-charge graphite anode material[J]. Energy Storage Science and Technology, 2017, 6(6): 1223-1230. DOI: 10.12028/j.issn.2095-4239. 2017.0098. | |
73 | CHENG Q, ZHANG Y. Multi-channel graphite for high-rate lithium ion battery[J]. Journal of the Electrochemical Society, 2018, 165(5): A1104-A1109. DOI: 10.1149/2.1171805jes. |
74 | 阳晓霞, 冯辉, 金晶龙, 等. 高比功率锂离子电池设计与性能研究[J]. 电源技术, 2018, 42(2): 195-198. DOI: 10.3969/j.issn.1002-087X.2018.02.010. |
YANG X X, FENG H, JIN J L, et al. Design and performance research of lithium ion battery with high specific power[J]. Chinese Journal of Power Sources, 2018, 42(2): 195-198. DOI: 10.3969/j.issn.1002-087X.2018.02.010. | |
75 | ZOU Z M, JIANG C H. Nitrogen-doped amorphous carbon coated mesocarbon microbeads as excellent high rate Li storage anode materials[J]. Journal of Materials Science & Technology, 2019, 35(4): 644-650. DOI: 10.1016/j.jmst.2018.10.016. |
76 | LAI J M, JIANG C H, ZOU Z M. Oxygen-deficient Nb2O5- x decorated MCMB anode with much enhanced rate and cycle performances for Li-ion batteries[J]. Applied Surface Science, 2022, 604: 154564. DOI: 10.1016/j.apsusc.2022.154564. |
77 | GONG X, GUO S H, DING Y Y, et al. Preparation of mesocarbon microbeads as anode material for lithium-ion battery by co-carbonization of FCC decant oil and conductive carbon black[J]. Fuel Processing Technology, 2022, 227: 107110. DOI: 10.1016/j.fuproc.2021.107110. |
78 | 李圣远, 叶传仁, 王伊哲, 等. 面向快充锂离子电池的氮掺杂多孔硬碳负极[J]. 硅酸盐学报, 2023, 51(9): 2188-2196. DOI: 10.14062/j.issn.0454-5648.20230094. |
LI S Y, YE C R, WANG Y Z, et al. Nitrogen-doped porous hard carbon as an anode for fast-charging lithium-ion batteries[J]. Journal of the Chinese Ceramic Society, 2023, 51(9): 2188-2196. DOI: 10.14062/j.issn.0454-5648.20230094. | |
79 | LI Y Q, VASILEIADIS A, ZHOU Q, et al. Origin of fast charging in hard carbon anodes[J]. Nature Energy, 2024, 9: 134-142. DOI: 10.1038/s41560-023-01414-5. |
80 | HU M F, HUANG L P, LI H, et al. Research progress on hard carbon anode for Li/Na-ion batteries[J]. Journal of Inorganic Materials, 2024, 39(1): 32. DOI: 10.15541/jim20230365. |
81 | XIE L J, TANG C, BI Z H, et al. Hard carbon anodes for next-generation Li-ion batteries: Review and perspective[J]. Advanced Energy Materials, 2021, 11(38): 2101650. DOI: 10.1002/aenm.202101650. |
82 | 苏少鹏, 李进, 张佃平, 等. 红柳基锂电池负极材料的制备及电化学性能[J]. 储能科学与技术, 2021, 10(6): 2082-2089. DOI: 10.19799/j.cnki.2095-4239.2021.0170. |
SU S P, LI J, ZHANG D P, et al. Preparation and electrochemical properties of negative eletrode materials for tamarium-based lithiumion batteries[J]. Energy Storage Science and Technology, 2021, 10(6): 2082-2089. DOI: 10.19799/j.cnki.2095-4239.2021.0170. | |
83 | 赵清江, 张贵锋. 硬碳的预锂化及其电化学性能[J]. 储能科学与技术, 2021, 10(6): 2112-2116. DOI: 10.19799/j.cnki.2095-4239. 2021.0239. |
ZHAO Q J, ZHANG G F. Prelithiation of hard carbon and its electrochemical performance[J]. Energy Storage Science and Technology, 2021, 10(6): 2112-2116. DOI: 10.19799/j.cnki.2095-4239.2021.0239. | |
84 | TANG Y X, ZHANG Y Y, DENG J Y, et al. Mechanical force-driven growth of elongated bending TiO2-based nanotubular materials for ultrafast rechargeable lithium ion batteries[J]. Advanced Materials, 2014, 26(35): 6111-6118. DOI: 10.1002/adma. 201402000. |
85 | YANG C F, MA D W, YANG J, et al. Crystallographic insight of reduced lattice volume expansion in mesoporous Cu2+-doped TiNb2O7 microspheres during Li+ insertion[J]. Advanced Functional Materials, 2023, 33(15): 2212854. DOI: 10.1002/adfm. 202212854. |
86 | GUO B K, YU X Q, SUN X G, et al. A long-life lithium-ion battery with a highly porous TiNb2O7 anode for large-scale electrical energy storage[J]. Energy & Environmental Science, 2014, 7(7): 2220-2226. DOI: 10.1039/C4EE00508B. |
87 | LIANG D W, LU Y, ZHOU N N, et al. Ultrathin carbon-coated porous TiNb2O7 nanosheets as anode materials for enhanced lithium storage[J]. Nanomaterials, 2022, 12(17): 2943. DOI: 10.3390/nano12172943. |
88 | CHENG Q S, LIANG J W, LIN N, et al. Porous TiNb2O7 nanospheres as ultra long-life and high-power anodes for lithium-ion batteries[J]. Electrochimica Acta, 2015, 176: 456-462. DOI: 10.1016/j.electacta.2015.07.038. |
89 | ZHANG Y, KANG C, ZHAO W, et al. Crystallographic engineering to reduce diffusion barrier for enhanced intercalation pseudocapacitance of TiNb2O7 in fast-charging batteries[J]. Energy Storage Materials, 2022, 47: 178-186. DOI: 10.1016/j.ensm.2022.01.061. |
90 | ZHANG Y, HUANG J, SAITO N, et al. Layered perovskite lithium yttrium titanate as a low-potential and ultrahigh-rate anode for lithium-ion batteries[J]. Advanced Energy Materials, 2022, 12(31): 2200922. DOI: 10.1002/aenm.202200922. |
91 | BOUKAMP B A, LESH G C, HUGGINS R A. All-solid lithium electrodes with mixed-conductor matrix[J]. Journal of the Electrochemical Society, 1981, 128(4): 725. DOI: 10.1149/1.2127495. |
92 | CHAN C K, PENG H L, LIU G, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature Nanotechnology, 2008, 3(1): 31-35. DOI: 10.1038/nnano. 2007.411. |
93 | ZHANG X H, WANG D H, QIU X Y, et al. Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation[J]. Nature Communications, 2020, 11(1): 3826. DOI: 10.1038/s41467-020-17686-4. |
94 | FENG K, LI M, LIU W W, et al. Silicon-based anodes for lithium-ion batteries: From fundamentals to practical applications[J]. Small, 2018, 14(8). DOI: 10.1002/smll.201702737. DOI: 10.1002/smll.201702737. |
95 | LI J Y, XU Q, LI G, et al. Research progress regarding Si-based anode materials towards practical application in high energy density Li-ion batteries[J]. Materials Chemistry Frontiers, 2017, 1(9): 1691-1708. DOI: 10.1039/C6QM00302H. |
96 | CHEN H, LING M, HENCZ L, et al. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices[J]. Chemical Reviews, 2018, 118(18): 8936-8982. DOI: 10.1021/acs.chemrev.8b00241. |
97 | ZHANG C Z, WANG F, HAN J, et al. Challenges and recent progress on silicon-based anode materials for next-generation lithium-ion batteries[J]. Small Structures, 2021, 2(6): 2170015. DOI: 10.1002/sstr.202170015. |
98 | YANG Y, YUAN W, KANG W Q, et al. A review on silicon nanowire-based anodes for next-generation high-performance lithium-ion batteries from a material-based perspective[J]. Sustainable Energy & Fuels, 2020, 4(4): 1577-1594. DOI: 10.1039/C9SE01165J. |
99 | LIM K W, LEE J I, YANG J, et al. Catalyst-free synthesis of Si-SiOx core-shell nanowire anodes for high-rate and high-capacity lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(9): 6340-6345. DOI: 10.1021/am405618m. |
100 | HU L, XIA W M, TANG R H, et al. Excellent cyclic and rate performances of SiO/C/graphite composites as Li-ion battery anode[J]. Frontiers in Chemistry, 2020, 8: 388. DOI: 10.3389/fchem.2020.00388. |
101 | AL JA'FARAWY M S, HIKMAH D N, RIYADI U, et al. A review: The development of SiO2/C anode materials for lithium-ion batteries[J]. Journal of Electronic Materials, 2021, 50(12): 6667-6687. DOI: 10.1007/s11664-021-09187-x. |
102 | GU H T, WANG Y, ZENG Y, et al. Boosting cyclability and rate capability of SiOx via dopamine polymerization-assisted hybrid graphene coating for advanced lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(15): 17388-17395. DOI: 10.1021/acsami.2c01587. |
103 | 李文俊, 徐航宇, 杨琪, 等. 高能量密度锂电池开发策略[J]. 储能科学与技术, 2020, 9(2): 448-478. DOI: 10.19799/j.cnki.2095-4239.2020-0050. |
LI W J, XU H Y, YANG Q, et al. Development of strategies for high-energy-density lithium batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 448-478. DOI: 10.19799/j.cnki.2095-4239.2020-0050. | |
104 | CHIU K F, SU S H, LEU H J, et al. Silicon thin film anodes coated on micron carbon-fiber current collectors for lithium ion batteries[J]. Surface and Coatings Technology, 2015, 267: 70-74. DOI: 10.1016/j.surfcoat.2014.10.059. |
105 | ZHU X, CHOI S H, TAO R, et al. Building high-rate silicon anodes based on hierarchical Si@C@CNT nanocomposite[J]. Journal of Alloys and Compounds, 2019, 791: 1105-1113. DOI: 10.1016/j.jallcom.2019.03.354. |
106 | YUAN X Q, XIN H X, QIN X Y, et al. Self-assembly of SiO/reduced graphene oxide composite as high-performance anode materials for Li-ion batteries[J]. Electrochimica Acta, 2015, 155: 251-256. DOI: 10.1016/j.electacta.2014.12.124. |
107 | XU Q, SUN J K, LI G, et al. Facile synthesis of a SiOx/asphalt membrane for high performance lithium-ion battery anodes[J]. Chemical Communications, 2017, 53(89): 12080-12083. DOI: 10.1039/C7CC05816K. |
108 | DENG L, ZHENG Y, ZHENG X M, et al. Design criteria for silicon-based anode binders in half and full cells[J]. Advanced Energy Materials, 2022, 12(31): 2200850. DOI: 10.1002/aenm.202200850. |
109 | WANG H L, WU B Z, WU X K, et al. Key factors for binders to enhance the electrochemical performance of silicon anodes through molecular design[J]. Small, 2022, 18(1): e2101680. DOI: 10.1002/smll.202101680. |
110 | LI Z H, ZHANG Y P, LIU T F, et al. Silicon anode with high initial coulombic efficiency by modulated trifunctional binder for high-areal-capacity lithium-ion batteries[J]. Advanced Energy Materials, 2020, 10(20): 1903110. DOI: 10.1002/aenm. 201903110. |
111 | LIU D, ZHAO Y, TAN R, et al. Novel conductive binder for high-performance silicon anodes in lithium ion batteries[J]. Nano Energy, 2017, 36: 206-212. DOI: 10.1016/j.nanoen.2017.04.043. |
112 | 武美玲, 牛磊, 李世友, 等. 正极预锂化添加剂用于锂离子电池的研究进展 [J]. 储能科学与技术: 2024, 13(3): 759-769. DOI:10.19799/j.onki.2095-4239.2023.0809. |
WU M L, NIU L, LI S Y, et al. Research progress on cathode prelithium additives used in lithium-ion batteries [J]. Energy Storage Science and Technology: 2024, 13(3): 759-769. DOI:10.19799/j.onki.2095-4239.2023.0809. | |
113 | KASKHEDIKAR N A, MAIER J. Lithium storage in carbon nanostructures[J]. Advanced Materials, 2009, 21(25/26): 2664-2680. DOI: 10.1002/adma.200901079. |
114 | LEVI M D, AURBACH D. Diffusion coefficients of lithium ions during intercalation into graphite derived from the simultaneous measurements and modeling of electrochemical impedance and potentiostatic intermittent titration characteristics of thin graphite electrodes[J]. The Journal of Physical Chemistry B, 1997, 101(23): 4641-4647. DOI: 10.1021/jp9701911. |
115 | MARKEVICH E, LEVI M D, AURBACH D. Comparison between potentiostatic and galvanostatic intermittent titration techniques for determination of chemical diffusion coefficients in ion-insertion electrodes[J]. Journal of Electroanalytical Chemistry, 2005, 580(2): 231-237. DOI: 10.1016/j.jelechem.2005.03.030. |
116 | PERSSON K, SETHURAMAN V A, HARDWICK L J, et al. Lithium diffusion in graphitic carbon[J]. The Journal of Physical Chemistry Letters, 2010, 1(8): 1176-1180. DOI: 10.1021/jz100188d. |
117 | TAKAMI N, HOSHINA K, INAGAKI H. Lithium diffusion in Li4/3Ti5/3O4 particles during insertion and extraction[J]. Journal of the Electrochemical Society, 2011, 158(6): A725-A730. DOI: 10.1149/1.3574037. |
118 | WUNDE F, BERKEMEIER F, SCHMITZ G. Lithium diffusion in sputter-deposited Li4Ti5O12 thin films[J]. Journal of Power Sources, 2012, 215: 109-115. DOI: 10.1016/j.jpowsour. 2012.04.102. |
119 | WAGEMAKER M, SIMON D , KELDER E , et al. A kinetic two-phase and equilibrium solid solution in spinel Li4+ xTi5O12[J]. Advanced Materials, 2006, 18(23): 3169-3173. DOI: 10.1002/adma.200601636. |
120 | ZHANG S S, JOW T R, AMINE K, et al. LiPF6-EC-EMC electrolyte for Li-ion battery[J]. Journal of Power Sources, 2002, 107(1): 18-23. DOI: 10.1016/S0378-7753(01)00968-5. |
121 | TAN S, JI Y J, ZHANG Z R, et al. Recent progress in research on high-voltage electrolytes for lithium-ion batteries[J]. Chemphyschem, 2014, 15(10): 1956-1969. DOI: 10.1002/cphc.201402175. |
122 | LI J L, FLEETWOOD J, HAWLEY W B, et al. From materials to cell: State-of-the-art and prospective technologies for lithium-ion battery electrode processing[J]. Chemical Reviews, 2022, 122(1): 903-956. DOI: 10.1021/acs.chemrev.1c00565. |
123 | GUO K L, QI S H, WANG H P, et al. High-voltage electrolyte chemistry for lithium batteries[J]. Small Science, 2022, 2(5): DOI: 10.1002/smsc.202100107. |
124 | XU W, CHEN X L, DING F, et al. Reinvestigation on the state-of-the-art nonaqueous carbonate electrolytes for 5 V Li-ion battery applications[J]. Journal of Power Sources, 2012, 213: 304-316. DOI: 10.1016/j.jpowsour.2012.04.031. |
125 | CHEBIAM R V, KANNAN A M, PRADO F, et al. Comparison of the chemical stability of the high energy density cathodes of lithium-ion batteries[J]. Electrochemistry Communications, 2001, 3(11): 624-627. DOI: 10.1016/S1388-2481(01)00232-6. |
126 | FAN X L, CHEN L, BORODIN O, et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries[J]. Nature Nanotechnology, 2018, 13(8): 715-722. DOI: 10.1038/s41565-018-0183-2. |
127 | SU C C, HE M N, SHI J Y, et al. Principle in developing novel fluorinated sulfone electrolyte for high voltage lithium-ion batteries[J]. Energy & Environmental Science, 2021, 14(5): 3029-3034. DOI: 10.1039/D0EE03890C. |
128 | ZHAO J T, LIANG Y, ZHANG X, et al. In situ construction of uniform and robust cathode-electrolyte interphase for Li-rich layered oxides[J]. Advanced Functional Materials, 2021, 31(8): 2009192. DOI: 10.1002/adfm.202009192. |
129 | FAN X L, WANG C S. High-voltage liquid electrolytes for Li batteries: Progress and perspectives[J]. Chemical Society Reviews, 2021, 50(18): 10486-10566. DOI: 10.1039/d1cs00450f. |
130 | NIE M Y, XIA J, DAHN J R. Binary additive blends including pyridine boron trifluoride for Li-ion cells[J]. Journal of the Electrochemical Society, 2015, 162(9): A1693-A1701. DOI: 10.1149/2.0171509jes. |
131 | DONG L W, ZHONG S J, YUAN B T, et al. Electrolyte engineering for high-voltage lithium metal batteries[J]. Research, 2022, 2022: 9837586. DOI: 10.34133/2022/9837586. |
132 | JIAO S H, REN X D, CAO R G, et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes[J]. Nature Energy, 2018, 3: 739-746. DOI: 10.1038/s41560-018-0199-8. |
133 | KIM H T. Leaching organics from the interphase[J]. Nature Energy, 2023, 8: 911-912. DOI: 10.1038/s41560-023-01281-0. |
134 | ZHANG G Z, CHANG J, WANG L G, et al. A monofluoride ether-based electrolyte solution for fast-charging and low-temperature non-aqueous lithium metal batteries[J]. Nature Communications, 2023, 14: 1081. DOI: 10.1038/s41467-023-36793-6. |
135 | WANG Q D, ZHAO C L, WANG J L, et al. High entropy liquid electrolytes for lithium batteries[J]. Nature Communications, 2023, 14(1): 440. DOI: 10.1038/s41467-023-36075-1. |
136 | CHENG H R, MA Z, KUMAR P, et al. High voltage electrolyte design mediated by advanced solvation chemistry toward high energy density and fast charging lithium-ion batteries[J]. Advanced Energy Materials, 2024, 14(18): 2304321. DOI: 10.1002/aenm.202304321. |
137 | LUO F, CHU G, XIA X X, et al. Thick solid electrolyte interphases grown on silicon nanocone anodes during slow cycling and their negative effects on the performance of Li-ion batteries[J]. Nanoscale, 2015, 7(17): 7651-7658. DOI: 10.1039/c5nr00045a. |
138 | HAN J G, LEE J B, CHA A M, et al. Unsymmetrical fluorinated malonatoborate as an amphoteric additive for high-energy-density lithium-ion batteries[J]. Energy & Environmental Science, 2018, 11(6): 1552-1562. DOI: 10.1039/C8EE00372F. |
139 | CHOI N S, YEW K H, LEE K Y, et al. Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode[J]. Journal of Power Sources, 2006, 161(2): 1254-1259. DOI: 10.1016/j.jpowsour.2006.05.049. |
140 | KENNEDY T, BRANDON M, LAFFIR F, et al. Understanding the influence of electrolyte additives on the electrochemical performance and morphology evolution of silicon nanowire based lithium-ion battery anodes[J]. Journal of Power Sources, 2017, 359: 601-610. DOI: 10.1016/j.jpowsour.2017.05.093. |
141 | 刘通, 吴晓萌, 于红玉, 等. 正极组成对硫系全固态电池电化学性能的影响[J]. 硅酸盐学报, 2019, 47(10): 1415-1422. DOI: 10.14062/j.issn.0454-5648.2019.10.08. |
LIU T, WU X M, YU H Y, et al. Effect of cathode composition on electrochemical performance of all-solid-state battery with sulfur-based electrolyte[J]. Journal of the Chinese Ceramic Society, 2019, 47(10): 1415-1422. DOI: 10.14062/j.issn.0454-5648.2019.10.08. | |
142 | WU F, CHEN N, CHEN R J, et al. "Liquid-in-solid" and "solid-in-liquid" electrolytes with high rate capacity and long cycling life for lithium-ion batteries[J]. Chemistry of Materials, 2016, 28(3): 848-856. DOI: 10.1021/acs.chemmater.5b04278. |
143 | KUANG Y D, CHEN C J, KIRSCH D, et al. Thick electrode batteries: Principles, opportunities, and challenges[J]. Advanced Energy Materials, 2019, 9(33): 1901457. DOI: 10.1002/aenm.201901457. |
144 | DU Z J, WOOD D L, DANIEL C, et al. Understanding limiting factors in thick electrode performance as applied to high energy density Li-ion batteries[J]. Journal of Applied Electrochemistry, 2017, 47(3): 405-415. DOI: 10.1007/s10800-017-1047-4. |
145 | TRAN H Y, GRECO G, TÄUBERT C, et al. Influence of electrode preparation on the electrochemical performance of LiNi0.8Co0.15Al0.05O2 composite electrodes for lithium-ion batteries[J]. Journal of Power Sources, 2012, 210: 276-285. DOI: 10.1016/j.jpowsour.2012.03.017. |
146 | ZHENG H H, LI J, SONG X Y, et al. A comprehensive understanding of electrode thickness effects on the electrochemical performances of Li-ion battery cathodes[J]. Electrochimica Acta, 2012, 71: 258-265. DOI: 10.1016/j.electacta.2012.03.161. |
147 | EBNER M, WOOD V. Tool for tortuosity estimation in lithium ion battery porous electrodes[J]. Journal of the Electrochemical Society, 2014, 162(2): A3064-A3070. DOI: 10.1149/2.0111502jes. |
148 | BILLAUD J, BOUVILLE F, MAGRINI T, et al. Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries[J]. Nature Energy, 2016, 1(8): 16097. DOI: 10.1038/nenergy.2016.97. |
149 | WANG J W, SUN Q, GAO X J, et al. Toward high areal energy and power density electrode for Li-ion batteries via optimized 3D printing approach[J]. ACS Applied Materials & Interfaces, 2018, 10(46): 39794-39801. DOI: 10.1021/acsami.8b14797. |
150 | ZHANG X, HUI Z Y, KING S T, et al. Gradient architecture design in scalable porous battery electrodes[J]. Nano Letters, 2022, 22(6): 2521-2528. DOI: 10.1021/acs.nanolett.2c00385. |
151 | MAJDI H S, LATIPOV Z A, BORISOV V, et al. Nano and battery anode: A review[J]. Nanoscale Research Letters, 2021, 16(1): 177. DOI: 10.1186/s11671-021-03631-x. |
152 | CHEN J M, HSU C H, LIN Y R, et al. High-power LiFePO4 cathode materials with a continuous nano carbon network for lithium-ion batteries[J]. Journal of Power Sources, 2008, 184(2): 498-502. DOI: 10.1016/j.jpowsour.2008.04.022. |
153 | XIONG Z L, YUN Y S, JIN H J. Applications of carbon nanotubes for lithium ion battery anodes[J]. Materials, 2013, 6(3): 1138-1158. DOI: 10.3390/ma6031138. |
154 | DETTLAFF-WEGLIKOWSKA U, YOSHIDA J, SATO N, et al. Effect of single-walled carbon nanotubes as conductive additives on the performance of LiCoO2-based electrodes[J]. Journal of the Electrochemical Society, 2011, 158(2): A174. DOI: 10.1149/1.3526601. |
155 | WANG G P, LI H, ZHANG Q T, et al. The study of carbon nanotubes as conductive additives of cathode in lithium ion batteries[J]. Journal of Solid State Electrochemistry, 2011, 15(4): 759-764. DOI: 10.1007/s10008-010-1143-4. |
156 | DETTLAFF-WEGLIKOWSKA U, SATO N, YOSHIDA J, et al. Preparation and electrochemical characterization of LiMnPO4/single-walled carbon nanotube composites as cathode material for Li-ion battery[J]. Physica Status Solidi (b), 2009, 246(11/12): 2482-2485. DOI: 10.1002/pssb.200982290. |
157 | BAI N B, XIANG K X, ZHOU W, et al. LiFePO4/carbon nanowires with 3D nano-network structure as potential high performance cathode for lithium ion batteries[J]. Electrochimica Acta, 2016, 191: 23-28. DOI: 10.1016/j.electacta.2016.01.019. |
158 | LAIN M J, BRANDON J, KENDRICK E. Design strategies for high power vs. high energy lithium ion cells[J]. Batteries, 2019, 5(4): 64. DOI: 10.3390/batteries5040064. |
159 | ZHU P C, GASTOL D, MARSHALL J, et al. A review of current collectors for lithium-ion batteries[J]. Journal of Power Sources, 2021, 485: 229321. DOI: 10.1016/j.jpowsour.2020.229321. |
160 | 张稚国, 李华清, 王莉, 等. 锂离子电池塑料-金属复合集流体的特性及制备研究进展[J]. 储能科学与技术, 2024, 13(3): 749-758. DOI: 10.19799/j.cnki.2095-4239.2023.0763. |
ZHANG Z G, LI H Q, WANG L, et al. Characteristics and preparation of metallized plastic current collectors for lithium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(3): 749-758. DOI: 10.19799/j.cnki.2095-4239.2023.0763. | |
161 | ANK M, SOMMER A, ABO GAMRA K, et al. Lithium-ion cells in automotive applications: Tesla 4680 cylindrical cell teardown and characterization[J]. Journal of the Electrochemical Society, 2023, 170(12): 120536. DOI: 10.1149/1945-7111/ad14d0. |
[1] | 杨建航, 冯文婷, 韩俊伟, 魏欣茹, 马晨宇, 毛常明, 智林杰, 孔德斌. 锂/钠-氯二次电池的最新进展——从材料构建到性能评估[J]. 储能科学与技术, 2024, 13(6): 1824-1834. |
[2] | 李召阳, 刘定宏, 赵岩岩, 陈满, 雷旗开, 彭鹏, 刘磊. 高比能量锂离子软包电池针刺测试的影响因素研究[J]. 储能科学与技术, 2024, 13(1): 57-71. |
[3] | 李淼, 于永利, 吴剑扬, 雷敏, 周恒辉. 高能量密度磷酸铁锂正极设计[J]. 储能科学与技术, 2023, 12(7): 2045-2058. |
[4] | 张策, 李思吾, 谢佳. 合金型负极预锂化技术研究进展[J]. 储能科学与技术, 2022, 11(5): 1383-1400. |
[5] | 靳文婷, 廖满生, 黄骥, 魏子栋. 车用高能量密度锂离子电池技术发展态势[J]. 储能科学与技术, 2022, 11(1): 350-358. |
[6] | 闫梦蝶, 李晖, 凌敏, 潘慧霖, 张强. 基于溶解沉积机制锂硫电池的研究进展简评[J]. 储能科学与技术, 2020, 9(6): 1606-1613. |
[7] | 李文俊, 徐航宇, 杨琪, 李久铭, 张振宇, 王胜彬, 彭佳悦, 张斌, 陈相雷, 张臻, 杨萌, 赵言, 耿瑶瑶, 黄文师, 丁泽鹏, 张雷, 田启友, 俞会根, 李泓. 高能量密度锂电池开发策略[J]. 储能科学与技术, 2020, 9(2): 448-478. |
[8] | 邹剑, 汪博筠, 杨家超, 牛晓滨, 王丽平. 锂离子电池正极材料β-Li0.3V2O5 的电化学性能研究[J]. 储能科学与技术, 2020, 9(2): 353-360. |
[9] | 刘庆华, 张赛, 蒋明哲, 王秋实, 邢学奇, 杨虹, 黄峰, LEMMON P John, 缪平. 低成本液流电池储能技术研究[J]. 储能科学与技术, 2019, 8(S1): 60-64. |
[10] | 张永龙, 夏会玲, 林久, 陈少杰, 许晓雄. 浅析固态锂离子电池安全性[J]. 储能科学与技术, 2018, 7(6): 994-1002. |
[11] | 李 泓. “长续航动力锂电池新材料与新体系研究”项目介绍[J]. 储能科学与技术, 2016, 5(6): 915-918. |
[12] | 夏永高,刘兆平. 锂离子电池高容量富锂锰基正极材料研究进展[J]. 储能科学与技术, 2016, 5(3): 384-387. |
[13] | 中国科学院"长续航动力锂电池"项目组. 中国科学院高能量密度锂电池研究进展快报[J]. 储能科学与技术, 2016, 5(2): 172-176. |
[14] | 张华民, 王晓丽. 全钒液流电池技术最新研究进展[J]. 储能科学与技术, 2013, 2(3): 281-288. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||