储能科学与技术 ›› 2020, Vol. 9 ›› Issue (2): 448-478.doi: 10.19799/j.cnki.2095-4239.2020.0050
李文俊1, 徐航宇1, 杨琪1,2, 李久铭4, 张振宇1, 王胜彬1, 彭佳悦1,2, 张斌4, 陈相雷1, 张臻1, 杨萌4, 赵言1, 耿瑶瑶1, 黄文师1, 丁泽鹏1, 张雷1, 田启友5, 俞会根1, 李泓1,2,3()
收稿日期:
2020-01-31
修回日期:
2020-02-17
出版日期:
2020-03-05
发布日期:
2020-03-15
通讯作者:
李泓
E-mail:hli@iphy.ac.cn
作者简介:
李文俊(1990—),男,博士,研究方向为高能量密度锂离子电池,E-mail:wjli@solidstatelion.com;
基金资助:
LI Wenjun1, XU Hangyu1, YANG Qi1,2, LI Jiuming4, ZHANG Zhenyu1, WANG Shengbin1, PENG Jiayue1,2, ZHANG Bin4, CHEN Xianglei1, ZHANG Zhen1, YANG Meng4, ZHAO Yan1, GENG Yaoyao1, HUANG Wenshi1, DING Zepeng1, ZHANG Lei1, TIAN Qiyou5, YU Huigen1, LI Hong1,2,3()
Received:
2020-01-31
Revised:
2020-02-17
Online:
2020-03-05
Published:
2020-03-15
Contact:
Hong LI
E-mail:hli@iphy.ac.cn
摘要:
近年来各国政府对锂电池的发展都提出了阶段性的目标,要在满足安全性和其他综合技术指标的前提下,不断提高锂电池的能量密度,其基本思路是不断开发高比能电池材料的组合,并优化电芯设计及制造工艺。本文从材料筛选和电芯设计两方面出发,介绍了高能量密度锂电池的主要开发策略和未来发展趋势。在活性材料方面,总结了高比能锂电池正负极活性材料的研究现状,综合考虑了材料本身的性能和工程化、商业化前景,提出了富锂锰基正极材料和复合金属锂负极材料是高能量密度电池最具发展前景的活性材料;在非活性材料方面,总结了电解液、固态电解质、隔膜在不断提高能量密度的电池体系中可能面临的问题以及解决思路,提出了原位固态化技术是可行的技术路线之一;在电芯设计方面,评估了辅材选择和结构设计对电芯能量密度的影响,提出了高能量密度电芯设计的具体思路。最后,本文对高能量密度锂电池的开发做了全面的展望,提出锂电池的开发应从高能量、高安全、长寿命、快充放、低成本、耐高低温六个维度进行综合考虑,在保障其特定应用场景的使用要求下,不断提升能量密度是用户的终极需求。
中图分类号:
李文俊, 徐航宇, 杨琪, 李久铭, 张振宇, 王胜彬, 彭佳悦, 张斌, 陈相雷, 张臻, 杨萌, 赵言, 耿瑶瑶, 黄文师, 丁泽鹏, 张雷, 田启友, 俞会根, 李泓. 高能量密度锂电池开发策略[J]. 储能科学与技术, 2020, 9(2): 448-478.
LI Wenjun, XU Hangyu, YANG Qi, LI Jiuming, ZHANG Zhenyu, WANG Shengbin, PENG Jiayue, ZHANG Bin, CHEN Xianglei, ZHANG Zhen, YANG Meng, ZHAO Yan, GENG Yaoyao, HUANG Wenshi, DING Zepeng, ZHANG Lei, TIAN Qiyou, YU Huigen, LI Hong. Development of strategies for high-energy-density lithium batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 448-478.
1 | 李泓 . 锂离子电池基础科学问题(XV)——总结和展望[J]. 储能科学与技术, 2015, (3): 76-88. |
LI Hong . Fundamental scientific aspects of lithium ion batteries (XV) ——Summary and outlook[J]. Energy Storage Science and Technology, 2015, 4(3): 306-318. | |
2 | LIU L L , XU J , WANG S , et al . Practical evaluation of energy densities for sulfide solid-state batteries[J]. eTransportation, 2019, 1: doi: 10.1016/j.etran.2019.100010. |
3 | TARASCON J M , ARMAND M . Issues and challenges facing rechargeable lithium batteries[M]. Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. World Scientific. 2011: 171-179. |
4 | WANG L , CHEN B , MA J , et al . Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density[J]. Chemical Society Reviews, 2018, 47(17): 6505-6602. |
5 | ZHANG J N , LI Q , OUYANG C , et al . Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V[J]. Nature Energy, 2019, 4(7): 594-603. |
6 | H-JNOH, YOUN S , YOON C S , et al . Comparison of the structural and electrochemical properties of layered Li[Ni x Co y Mn z ]O2 (x=1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries[J]. Journal of Power Sources, 2013, 233: 121-130. |
7 | ZUO Y , LI B , JIANG N , et al . A high-capacity O2-type li-rich cathode material with a single-layer Li2MnO3 superstructure[J]. Advanced Materials, 2018, 30(16):doi: 10.1002/adma.201707255. |
8 |
LEE J, ZHANG Q , KIM J , et al . Controlled atomic solubility in Mn-rich composite material to achieve superior electrochemical performance for Li-ion batteries[J]. Advanced Energy Materials, 2019, doi: 10.1022/aenm.201902231 .
doi: 10.1022/aenm.201902231 |
9 |
WANG L , WU Z , ZOU J , et al . Li-free cathode materials for high energy density lithium batteries[J]. Joule, 2019, doi: 10.1016 / j.joule.2019.07.011 .
doi: 10.1016 / j.joule.2019.07.011 |
10 | NITTA N , WU F , LEE J T, et al . Li-ion battery materials: Present and future[J]. Materials Today, 2015, 18(5): 252-264. |
11 | HWANG J , KIM K , JUNG W S , et al . Facile and scalable synthesis of SiO x materials for Li-ion negative electrodes[J]. Journal of Power Sources, 2019, 436:doi: 10.1016 / j.jpowsour.2019.226883. |
12 | 褚赓 . 锂离子电池硅基负极材料的研究[D]. 北京: 中国科学院物理研究所, 2017. |
CHU Geng . Silicon-based anode materials for lithium ion battery[D]. Beijing: Institute of Physics, Chinese Academy of Sciences, 2017. | |
13 | LIU X H , ZHONG L , HUANG S , et al . Size-dependent fracture of silicon nanoparticles during lithiation[J]. ACS Nano, 2012, 6(2): 1522-1531. |
14 | WANG D , GAO M , PAN H , et al . High performance amorphous-Si@SiO x /C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization[J]. Journal of Power Sources, 2014, 256: 190-199. |
15 | 卢斌, 王辉, 胡仁宗, 等 . 纳米砂磨法制备SnO2-CuO-Graphite复合负极材料及其电化学性能[C]//中国化学会第30届学术年会-第三十分会:化学电源, 2016. |
LU Bin , WANG Hui , HU Renzong , et al . Enhanced electrochemical performances of SnO2-CuO-graphite anode by wet-phase bead milling[C]//The 30th academic annual meeting of Chinese Chemical Society-30th branch: Chemical Energy, 2016. | |
16 | AL-TAAY H F , MAHDI M A , PARLEVLIET D , et al . Growth and characterization of silicon nanowires catalyzed by Zn metal via pulsed plasma-enhanced chemical vapor deposition[J]. Superlattices and Microstructures, 2014, 68: 90-100. |
17 | HOU X , ZHANG M , WANG J , et al . High yield and low-cost ball milling synthesis of nano-flake Si@SiO2 with small crystalline grains and abundant grain boundaries as a superior anode for Li-ion batteries[J]. Journal of Alloys and Compounds, 2015, 639: 27-35. |
18 | LI Q , YI T , WANG X , et al . In-situ visualization of lithium plating in all-solid-state lithium-metal battery[J]. Nano Energy, 2019, 63: doi: 10.1016/j.nanoen.2019.103895. |
19 | XU Q , LI J Y , SUN J K , et al . Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes[J]. Advanced Energy Materials, 2017, 7(3): doi: 10.1002/aenm.201601481. |
20 | YUN Q , HE Y B , LV W , et al . Chemical dealloying derived 3D porous current collector for Li metal anodes [J]. Advanced Materials, 2016, 28(32): 6932-6939. |
21 | WANG H , LIN D , XIE J , et al . An interconnected channel-like framework as host for lithium metal composite anodes[J]. Advanced Energy Materials, 2019, 9(7): doi: 10.1002/aenm.201802720. |
22 | YUE X Y , LI X L , WANG W W , et al . Wettable carbon felt framework for high loading Li-metal composite anode[J]. Nano Energy, 2019, 60: 257-266. |
23 | WU H , ZHANG Y , DENG Y , et al . A lightweight carbon nanofiber-based 3D structured matrix with high nitrogen-doping level for lithium metal anodes[J]. Science China Materials, 2019, 62(1): 87-94. |
24 | LIN K , QIN X , LIU M , et al . Ultrafine titanium nitride sheath decorated carbon nanofiber network enabling stable lithium metal anodes[J]. Advanced Functional Materials, 2019, 29(46):doi: 10.1002/adfm.201903229. |
25 | LIU Y , QIN X , ZHANG S , et al . A scalable slurry process to fabricate a 3D lithiophilic and conductive framework for a high performance lithium metal anode[J]. Journal of Materials Chemistry A, 2019, 7(21): 13225-13233. |
26 | ZHOU M , LYU Y, LIU Y , et al . Porous scaffold of TiO2 for dendrite-free lithium metal anode[J]. Journal of Alloys and Compounds, 2019, 791: 364-370. |
27 | ZHANG Y J , WANG W , TANG H , et al . An ex-situ nitridation route to synthesize Li3N-modified Li anodes for lithium secondary batteries[J]. Journal of Power Sources, 2015, 277: 304-311. |
28 | LI Y , SUN Y , PEI A , et al . Robust pinhole-free Li3N solid electrolyte grown from molten lithium[J]. ACS Central Science, 2018, 4(1): 97-104. |
29 | YAN C , CHENG X B , YAO Y X , et al . An armored mixed conductor interphase on a dendrite-free lithium-metal anode[J]. Advanced Materials, 2018, 30(45):doi:10.1002/adma.201804461. |
30 | XU R , ZHANG X Q , CHENG X B , et al . Artificial soft-rigid protective layer for dendrite-free lithium metal anode[J]. Advanced Functional Materials, 2018, 28(8): doi: 10.1002/adfm.201705838. |
31 | ZHENG G , LEE S W, LIANG Z , et al . Interconnected hollow carbon nanospheres for stable lithium metal anodes[J]. Nature Nanotechnology, 2014, 9(8): 618-623. |
32 | WANG L , ZHANG L , WANG Q , et al . Long lifespan lithium metal anodes enabled by Al2O3 sputter coating[J]. Energy Storage Materials, 2018, 10: 16-23. |
33 | HU Z , ZHANG S , DONG S , et al . Poly(ethyl α-cyanoacrylate)-based artificial solid electrolyte interphase layer for enhanced interface stability of Li metal anodes[J]. Chemistry of Materials, 2017, 29(11): 4682-4689. |
34 | EHTESHAMI N , EGUIA-BARRIO A , DE MEATZA I , et al . Adiponitrile-based electrolytes for high voltage, graphite-based Li-ion battery[J]. Journal of Power Sources, 2018, 397: 52-58. |
35 | GALLUS D R , SCHMITZ R , WAGNER R , et al . The influence of different conducting salts on the metal dissolution and capacity fading of NCM cathode material[J]. Electrochimica Acta, 2014, 134: 393-398. |
36 | JIANG L , WANG Q , SUN J . Electrochemical performance and thermal stability analysis of LiNi x Co y Mn z O2 cathode based on a composite safety electrolyte[J]. Journal of Hazardous Materials, 2018, 351: 260-269. |
37 | ZHAO W , ZHENG G , LIN M , et al . Toward a stable solid-electrolyte-interfaces on nickel-rich cathodes: LiPO2F2 salt-type additive and its working mechanism for LiNi0.5Mn0.25Co0.25O2 cathodes[J]. Journal of Power Sources, 2018, 380: 149-157. |
38 | XIE B , ZUO P , WANG L , et al . Achieving long-life Prussian blue analogue cathode for Na-ion batteries via triple-cation lattice substitution and coordinated water capture[J]. Nano Energy, 2019, 61: 201-210. |
39 | JIA H , ZOU L , GAO P , et al . High-performance silicon anodes enabled by nonflammable localized high-concentration electrolytes[J]. Advanced Energy Materials, 2019, 9(31): doi: 10.1002/aenm.201900784. |
40 | WANG W , YANG S . Enhanced overall electrochemical performance of silicon/carbon anode for lithium-ion batteries using fluoroethylene carbonate as an electrolyte additive[J]. Journal of Alloys and Compounds, 2017, 695: 3249-3255. |
41 | BROWN Z L , HEISKANEN S , LUCHT B L . Using triethyl phosphate to increase the solubility of LiNO3 in carbonate electrolytes for improving the performance of the lithium metal anode[J]. Journal of the Electrochemical Society, 2019, 166(12): A2523-A2527. |
42 | ZHENG J , ENGELHARD M H , MEI D , et al . Electrolyte additive enabled fast charging and stable cycling lithium metal batteries[J]. Nature Energy, 2017, 2(3): doi: 10.1038/nenergy.2017.12. |
43 | CHEN S , ZHENG J , MEI D , et al . High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes[J]. Advanced Materials, 2018, 30(21):doi: 10.1002/adma.201706102. |
44 | GENG Z , LU J , LI Q , et al . Lithium metal batteries capable of stable operation at elevated temperature[J]. Energy Storage Materials, 2019, 23: 646-652. |
45 | CHEN L , FAN X , HU E , et al . Achieving high energy density through increasing the output voltage: A highly reversible 5.3 V battery[J]. Chem., 2019, 5(4): 896-912. |
46 | ZHAO W , ZHENG J , ZOU L , et al . High voltage operation of Ni-rich NMC cathodes enabled by stable electrode/electrolyte interphases[J]. Advanced Energy Materials, 2018, 8(19):doi: 10.1002/aenm.201800297. |
47 | ZHU Y , LUO X , ZHI H , et al . Diethyl (thiophen-2-ylmethyl) phosphonate: A novel multifunctional electrolyte additive for high voltage batteries[J]. Journal of Materials Chemistry A, 2018, 6(23): 10990-11004. |
48 | 李泓 . 全固态锂电池: 梦想照进现实[J]. 储能科学与技术, 2018, 7(2): 188-193. |
LI Hong . All-solid-state lithium battery: Dream into reality[J]. Energy Storage Science and Technology, 2018, 7(2): 188-193. | |
49 | ZU C , LI H . Thermodynamic analysis on energy densities of batteries[J]. Energy & Environmental Science, 2011, 4(8): 2614-2624. |
50 | 彭佳悦, 祖晨曦, 李泓 . 锂电池基础科学问题(I) ——化学储能电池理论能量密度的估算[J]. 储能科学与技术, 2013, 2(1): 55-62. |
PENG Jiayue , ZU Chenxi , LI Hong . Fundamental scientific aspects of lithium batteries(I) ——Thermodynamic calculations of theoretical energy densities of chemical energy storage systems[J]. Energy Storage Science and Technology, 2013, 2(1): 55-62. | |
51 | 吴娇杨, 刘品, 胡勇胜, 等 . 锂离子电池和金属锂离子电池的能量密度计算[J]. 储能科学与技术, 2016, 5(4): 443-453. |
WU Jiaoyang , LIU Pin , HU Yongsheng , et al . Calculation on energy densities of lithium ion batteries and metallic lithium ion batteries[J]. Energy Storage Science and Technology, 2016, 5(4): 443-453. | |
52 | XU K . Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews, 2004, 104(10): 4303-4417. |
53 | ZHAMU A , CHEN G , LIU C , et al . Reviving rechargeable lithium metal batteries: Enabling next-generation high-energy and high-power cells[J]. Energy & Environmental Science, 2012, 5(2): 5701-5707. |
54 | WENZEL S , LEICHTWEISS T , KRÜGER D , et al . Interphase formation on lithium solid electrolytes—An in situ approach to study interfacial reactions by photoelectron spectroscopy[J]. Solid State Ionics, 2015, 278: 98-105. |
55 | WENZEL S , SEDLMAIER S J , DIETRICH C , et al . Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes[J]. Solid State Ionics, 2018, 318: 102-112.. |
56 | WENZEL S , RANDAU S , LEICHTWEIß T , et al . Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode[J]. Chemistry of Materials, 2016, 28(7):doi: 10.1021/acs.chemmater.6b00610. |
57 | LEPLEY N D , HOLZWARTH N A W , DU Y A . Structures, Li+ mobilities, and interfacial properties of solid electrolytes Li3PS4 and Li3PO4 from first principles[J]. Physical Review B, 2013, 88(10): 2991-3000. |
58 | ZHU Y , HE X , MO Y . Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first-principles calculations[J]. ACS Applied Materials & Interfaces, 2015, 7(42): 23685-23693. |
59 | RICHARDS W D , MIARA L J , WANG Y , et al . Interface stability in solid-state batteries[J]. Chemistry of Materials, 2016, 28(1): 266-273. |
60 | HAN F , ZHU Y , HE X , et al . Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes[J]. Advanced Energy Materials, 2016, 6(8): 10.1002/aenm.201501590. |
61 | KUWATA N , KUDO S , MATSUDA Y , et al . Fabrication of thin-film lithium batteries with 5-V-class LiCoMnO4 cathodes[J]. Solid State Ionics, 2014, 262: 165-169. |
62 | OH G, HIRAYAMA M , KWON O , et al . Bulk-type all solid-state batteries with 5 V class LiNi0.5Mn1.5O4 cathode and Li10GeP2S12 solid electrolyte[J]. Chemistry of Materials, 2016, 28(8): doi: 10.1021/acs.chemmater.5b04940. |
63 | YUBUCHI S , ITO Y, MATSUYAMA T , et al . 5V class LiNi0.5Mn1.5O4 positive electrode coated with Li3PO4 thin film for all-solid-state batteries using sulfide solid electrolyte[J]. Solid State Ionics, 2015, 285: doi: 10.1016/j.ssi.2015.08.001. |
64 | 李泓, 许晓雄 . 固态锂电池研发愿景和策略[J]. 储能科学与技术, 2016, 5(5): 607-614. |
LI Hong , XU Xiaoxiong . R&D vision and strategies on solid lithium batteries[J]. Energy Storage Science and Technology, 2016, 5(5): 607-614. | |
65 | MANTHIRAM A , CHUNG S H , ZU C . Lithium-sulfur batteries: Progress and prospects[J]. Advanced Materials, 2015, 27(12): 1980-2006. |
66 | LAM P, YAZAMI R . Physical characteristics and rate performance of (CFx ) n (0.33<x<0.66) in lithium batteries[J]. Journal of Power Sources, 2006, 153(2): 354-359. |
67 | LASCAUD M , LACHTER A , SALARDENNE J , et al . Electrical conduction mechanisms in FeF3 thin films[J]. Thin Solid Films, 1979, 59(3): 353-360. |
68 | WANG D Y , GONG M , CHOU H L , et al . Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets-carbon nanotubes for hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2015, 137(4):doi: 10.1021/ja511572q. |
69 | YAMADA T , ITO S, OMODA R , et al . All solid-state lithium-sulfur battery using a glass-type P2S5-Li2S electrolyte: Benefits on anode kinetics[J]. Journal of the Electrochemical Society, 2015: doi: 10.1016/j.electacta.2017.01.155. |
70 | NAGAO M , HAYASHI A , TATSUMISAGO M . Fabrication of favorable interface between sulfide solid electrolyte and Li metal electrode for bulk-type solid-state Li/S battery[J]. Electrochemistry Communications, 2012, 22: 177-180. |
71 | INOUE T , MUKAI K . Are all-solid-state lithium-ion batteries really safe?–Verification by differential scanning calorimetry with an all-inclusive microcell[J]. ACS Applied Materials & Interfaces, 2017, 9(2): 1507-1515. |
72 | WU J Y , LING S G , YANG Q , et al . Forming solid electrolyte interphase in situ in an ionic conducting Li1.5Al0.5Ge1.5(PO4)3-polypropylene (PP) based separator for Li-ion batteries[J]. Chinese Physics B, 2016, 25(7): doi: 10.1088/1674-1056/25/7/078204. |
73 | CHAI J , LIU Z , MA J , et al . In situ generation of poly(vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries[J]. Advanced Science, 2017, 4(2): doi: 10.1002/advs.201600377. |
74 | LIU F , WANG W , YIN Y , et al . Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries[J]. Science Advances, 4(10): doi: 10.1126/sciadv.aat5383. |
75 | LEE H, YANILMAZ M , TOPRAKCI O , et al . A review of recent developments in membrane separators for rechargeable lithium-ion batteries[J]. Energy & Environmental Science, 2014, 7(12): 3857-3886. |
76 | ZHANG S S . A review on the separators of liquid electrolyte Li-ion batteries[J]. Journal of Power Sources, 2007, 164(1): 351-364. |
77 | XIAO Q , LI Z , GAO D , et al . A novel sandwiched membrane as polymer electrolyte for application in lithium-ion battery[J]. Journal of Membrane Science, 2009, 326(2): 260-264. |
78 | HUANG X . Separator technologies for lithium-ion batteries[J]. Journal of Solid State Electrochemistry, 2011, 15(4): 649-662. |
79 | RYOU M H , LEE Y M, PARK J K , et al . Mussel-inspired polydopamine-treated polyethylene separators for high-power Li-ion batteries[J]. Advanced Materials, 2011, 23(27): 3066-3070. |
80 | CHO T H, TANAKA M , OHNISHI H , et al . Composite nonwoven separator for lithium-ion battery: Development and characterization[J]. Journal of Power Sources, 2010, 195(13): 4272-4277. |
81 | CHUN S J , CHOI E S , LEE E H, et al . Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries[J]. Journal of Materials Chemistry, 2012, 22(32): 16618-16626. |
82 | CROCE F , FOCARETE M L , HASSOUN J , et al . A safe, high-rate and high-energy polymer lithium-ion battery based on gelled membranes prepared by electrospinning[J]. Energy & Environmental Science, 2011, 4(3): 921-927. |
83 | QI W , LU C , CHEN P , et al . Electrochemical performances and thermal properties of electrospun poly (phthalazinone ether sulfone ketone) membrane for lithium-ion battery[J]. Materials Letters, 2012, 66(1): 239-241. |
84 | YI W , HUAIYU Z , JIAN H , et al . Wet-laid non-woven fabric for separator of lithium-ion battery[J]. Journal of Power Sources, 2009, 189(1): 616-619. |
85 | SAHAY R , KUMAR P S , SRIDHAR R , et al . Electrospun composite nanofibers and their multifaceted applications[J]. Journal of Materials Chemistry, 2012, 22(26): 12953-12971. |
86 | ZHOU X , YUE L , ZHANG J , et al . A core-shell structured polysulfonamide-based composite nonwoven towards high power lithium ion battery separator[J]. Journal of the Electrochemical Society, 2013, 160(9): A1341-A1347. |
87 | ZHANG J , LIU Z , KONG Q , et al . Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator[J]. ACS Applied Materials & Interfaces, 2013, 5(1): 128-134. |
88 | XIA M , LIU Q , ZHOU Z , et al . A novel hierarchically structured and highly hydrophilic poly (vinyl alcohol-co-ethylene)/poly (ethylene terephthalate) nanoporous membrane for lithium-ion battery separator[J]. Journal of Power Sources, 2014, 266: 29-35. |
89 | MIAO Y E , ZHU G N , HOU H , et al . Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries[J]. Journal of Power Sources, 2013, 226: 82-86. |
90 | HAQUE S , REHMAN I , DARR J A . Synthesis and characterization of grafted nanohydroxyapatites using functionalized surface agents[J]. Langmuir, 2007, 23(12):6671-6676. |
91 | CHEN W , LIU Y , MA Y , et al . Improved performance of lithium ion battery separator enabled by co-electrospinnig polyimide/poly (vinylidene fluoride-co-hexafluoropropylene) and the incorporation of TiO2-(2-hydroxyethyl methacrylate)[J]. Journal of Power Sources, 2015, 273: 1127-1135. |
92 | SONG J , RYOU M H , SON B, et al . Co-polyimide-coated polyethylene separators for enhanced thermal stability of lithium ion batteries[J]. Electrochimica Acta, 2012, 85: 524-530. |
93 | ZHANG J , KONG Q , LIU Z , et al . A highly safe and inflame retarding aramid lithium ion battery separator by a papermaking process[J]. Solid State Ionics, 2013, 245: 49-55. |
94 | XU Q , KONG Q , LIU Z , et al . Polydopamine-coated cellulose microfibrillated membrane as high performance lithium-ion battery separator[J]. RSC Advances, 2014, 4(16): 7845-7850. |
95 | MANTHIRAM A , FU Y , CHUNG S H , et al . Rechargeable lithium-sulfur batteries[J]. Chemical Reviews, 2014, 114(23): 11751-11787. |
96 | LEE S K, OH S M, PARK E , et al . Highly cyclable lithium-sulfur batteries with a dual-type sulfur cathode and a lithiated Si/SiO x nanosphere anode[J]. Nano Letters, 2015, 15(5): 2863-2868. |
97 | PENG H J , WANG D W , HUANG J Q , et al . Janus separator of polypropylene-supported cellular graphene framework for sulfur cathodes with high utilization in lithium-sulfur batteries[J]. Advanced Science, 2016, 3(1): doi: 10.1002/advs.201500268. |
98 |
YU X , WU H , KOO J H, et al . Tailoring the pore size of a polypropylene separator with a polymer having intrinsic nanoporosity for suppressing the polysulfide shuttle in lithium-sulfur batteries[J]. Advanced Energy Materials, 2019, doi: 10.1002/aenm.201902872 .
doi: 10.1002/aenm.201902872 |
99 | ZHUANG T Z , HUANG J Q , PENG H J , et al . Rational integration of polypropylene/graphene oxide/nafion as ternary-layered separator to retard the shuttle of polysulfides for lithium-sulfur batteries[J]. Small, 2016, 12(3): 381-389. |
100 | YAO H , YAN K , LI W , et al . Improved lithium-sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode-separator interface[J]. Energy & Environmental Science, 2014, 7(10): 3381-3390. |
101 | BALACH J , JAUMANN T , KLOSE M , et al . Functional mesoporous carbon-coated separator for long-life, high-energy lithium-sulfur batteries[J]. Advanced Functional Materials, 2015, 25(33): 5285-5291. |
102 | LAIN M J , BRANDON J , KENDRICK E . Design strategies for high power vs. high energy lithium ion cells[J]. Batteries, 2019, 5(4):doi: 10.3390/batteries5040064. |
103 | ZHOU Z , LI N , YANG Y , et al . Ultra-lightweight 3D carbon current collectors: Constructing all-carbon electrodes for stable and high energy density dual-ion batteries[J]. Advanced Energy Materials, 2018, 8(26): doi: 10.1002/aenm.201801439. |
104 | QUINN J B , WALDMANN T , RICHTER K , et al . Energy density of cylindrical Li-ion cells: A comparison of commercial 18650 to the 21700 cells[J]. Journal of the Electrochemical Society, 2018, 165(14): A3284-A3291. |
105 | GALLAGHER K G , TRASK S E , BAUER C , et al . Optimizing areal capacities through understanding the limitations of lithium-ion electrodes[J]. Journal of the Electrochemical Society, 2016, 163(2): A138-A149. |
[1] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[2] | 张策, 李思吾, 谢佳. 合金型负极预锂化技术研究进展[J]. 储能科学与技术, 2022, 11(5): 1383-1400. |
[3] | 靳文婷, 廖满生, 黄骥, 魏子栋. 车用高能量密度锂离子电池技术发展态势[J]. 储能科学与技术, 2022, 11(1): 350-358. |
[4] | 杨春燕, 马云龙, 冯小琼, 张世英, 安长胜, 李劲风. 碳基材料在铝离子电池中的研究进展[J]. 储能科学与技术, 2021, 10(2): 432-439. |
[5] | 沈剑, 黄碧雄, 谢兆康, 李嘉寅, 刘宁宁, 贾志强. FSEC赛车动力电池箱内部结构布置与优化设计[J]. 储能科学与技术, 2020, 9(S1): 31-38. |
[6] | 闫梦蝶, 李晖, 凌敏, 潘慧霖, 张强. 基于溶解沉积机制锂硫电池的研究进展简评[J]. 储能科学与技术, 2020, 9(6): 1606-1613. |
[7] | 杨续来, 张峥, 曹勇, 刘成士, 艾新平. 高能量密度锂离子电池结构工程化技术探讨[J]. 储能科学与技术, 2020, 9(4): 1127-1136. |
[8] | 邹剑, 汪博筠, 杨家超, 牛晓滨, 王丽平. 锂离子电池正极材料β-Li0.3V2O5 的电化学性能研究[J]. 储能科学与技术, 2020, 9(2): 353-360. |
[9] | 张永龙, 夏会玲, 林久, 陈少杰, 许晓雄. 浅析固态锂离子电池安全性[J]. 储能科学与技术, 2018, 7(6): 994-1002. |
[10] | 王 超1,戴兴建2,汪 勇2,李 玺1,钟国彬1. 储能复合材料飞轮力学研究进展[J]. 储能科学与技术, 2017, 6(5): 1076-1083. |
[11] | 李 泓. “长续航动力锂电池新材料与新体系研究”项目介绍[J]. 储能科学与技术, 2016, 5(6): 915-918. |
[12] | 夏永高,刘兆平. 锂离子电池高容量富锂锰基正极材料研究进展[J]. 储能科学与技术, 2016, 5(3): 384-387. |
[13] | 中国科学院"长续航动力锂电池"项目组. 中国科学院高能量密度锂电池研究进展快报[J]. 储能科学与技术, 2016, 5(2): 172-176. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||