储能科学与技术 ›› 2017, Vol. 6 ›› Issue (5): 1076-1083.doi: 10.12028/j.issn.2095-4239.2017.0059

• 特约文章 • 上一篇    下一篇

储能复合材料飞轮力学研究进展

王  超1,戴兴建2,汪  勇2,李  玺1,钟国彬1   

  1. 1广东电网有限责任公司电力科学研究院,广东 广州 510080;2清华大学工程物理系,北京 100084
  • 收稿日期:2017-05-16 修回日期:2017-06-26 出版日期:2017-09-01 发布日期:2017-09-01
  • 通讯作者: 戴兴建,副研究员,研究方向为飞轮储能技术与应用、复合材料力学等,E-mail:daixj@mail.tsinghua.edu.cn。
  • 作者简介:王超(1988—),男,工程师,博士,研究方向为储能技术,E-mail:wangchaomly@163.com
  • 基金资助:
    南方电网公司科技项目(GDKJXM00000039)

Research progress of energy storage composite flywheel

WANG Chao1, DAI Xingjian2, WANG Yong2, LI Xi1, ZHONG Guobin1   

  1. 1Electric Power Research Institute of Guangdong Power Grid Co., Ltd., Guangzhou 510080, Guangdong, China; 2Department of Engineering Physics, Tsinghua University, Beijing 100084, China
  • Received:2017-05-16 Revised:2017-06-26 Online:2017-09-01 Published:2017-09-01

摘要: 简要分析了飞轮储能的特点、应用领域及其关键技术,其中复合材料飞轮结构力学研究是提高飞轮能量密度的基础。在研究中,一般利用分析力学和有限元方法获得复合材料飞轮的应力、应变信息,运用强度准则判断其极限转速,确定工作转速下的应力状态。采用多环过盈装配、混杂纤维材料组合结构、纤维多向排布、缠绕以及机织叠层新结构设计,充分利用复合材料的可设计性来适应旋转结构的应力特征,从而提高储能密度。复合材料飞轮的储能量从早期的0.3~5 kW•h,发展到当今的30~130 kW•h,储能密度达到30~100 W•h/kg。合金钢飞轮材料费用估计700 $/kW•h,飞轮复合材料费用估计为3000 $/kW•h,复合材料飞轮的性价比离大规模储能应用还有相当的距离。

关键词: 飞轮储能, 复合材料, 结构设计, 力学研究

Abstract: The technical characteristics, application fields and key technologies of flywheel energy storage system were reviewed briefly, in which the mechanical and structural design of composite flywheel was the fundamental study for improving energy density. In particular analysis, both theoretical analysis and finite element calculation provided stress and strain information of composite flywheel at rated speed, and the ultimate speed was determined according to strength criterion. Some operations, such as multi-rings interference fitting, commingled fiber reinforced structures, multidirectional fiber alignment, winded and woven plies, were selected to enhance the energy density, making full use of the design feasibility of composite to adapt to the stress features in rotating condition. The energy capacity of composite flywheel had increased from 0.3—5 kW•h to 30—130 kW•h, and the energy density had realized 30~100 W•h/kg correspondingly. As contrast, alloy steel flywheel cost 700 $/kW•h and the cost of composite material in flywheel estimated at 3000 $/kW•h. Therefore, the low performance-price ratio restricted composite flywheels from large-scale applications.

Key words: flywheel energy storage, composite, structural design, mechanics research