储能科学与技术 ›› 2021, Vol. 10 ›› Issue (6): 2156-2168.doi: 10.19799/j.cnki.2095-4239.2021.0115
刘大进1,2(), 吴强1,2, 何仁杰1,2, 余创1, 谢佳1(), 程时杰1
收稿日期:
2021-03-19
修回日期:
2021-04-13
出版日期:
2021-11-05
发布日期:
2021-11-03
作者简介:
刘大进(1985—),男,博士研究生,研究方向为锂离子电池硅基负极,E-mail:基金资助:
Dajin LIU1,2(), Qiang WU1,2, Renjie HE1,2, Chuang YU1, Jia XIE1(), Shijie CHENG1
Received:
2021-03-19
Revised:
2021-04-13
Online:
2021-11-05
Published:
2021-11-03
摘要:
硅因其超高的理论比容量,有望成为下一代高性能锂离子电池的负极材料。硅在充放电过程中的剧烈体积膨胀会引起颗粒粉化、SEI膜过量生长以及活性物质失去电接触等问题,最终导致容量快速衰减。开发新型硅负极黏结剂和硅碳复合是提升硅负极性能的重要策略。生物高分子材料成本低、环境友好且富含有机官能团,非常适合用来开发低成本、高性能硅负极黏结剂,也适合作为碳前体合成硅碳复合材料。本文综述了近年来基于生物高分子的硅负极黏结剂和以生物高分子为碳前体的硅碳复合材料的研究进展。本文重点介绍了基于海藻酸钠、壳聚糖、淀粉的硅负极黏结剂,总结出生物高分子基黏结剂的主要改性方法有接枝特殊官能团、与其他聚合物共混或交联。基于这些改性方法,可分别提升黏结剂的黏附性、导电子或离子能力以及实现3D网络结构的构建。本文重点归纳了以纤维素、壳聚糖、淀粉、木质素为碳前体的硅碳复合材料,分别介绍了这些复合材料的性质、结构特点,及其对电化学性能的影响。基于以上分析,本文也指出了当前基于生物高分子的硅负极黏结剂和以生物高分子为碳前体的硅碳复合材料的不足,为其下一步发展指明了方向。
中图分类号:
刘大进, 吴强, 何仁杰, 余创, 谢佳, 程时杰. 生物高分子在锂离子电池硅负极中的研究进展[J]. 储能科学与技术, 2021, 10(6): 2156-2168.
Dajin LIU, Qiang WU, Renjie HE, Chuang YU, Jia XIE, Shijie CHENG. Research progress of biopolymers in Si anodes for lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(6): 2156-2168.
表1
基于生物高分子的硅负极黏结剂总结"
生物高分子黏结剂 | 循环圈数 | 容量保持/(mA·h/g) | 极片中黏结剂含量/% | 参考文献 |
---|---|---|---|---|
CS-g-PANI-0.5 | 200 (1 C) | 1091 | 20 | [ |
ppSA-ppCMC | 150 (0.5 A/g) | 1863 | 10 | [ |
guar gum | 300 (2.1 A/g) | 1561 | 15 | [ |
Alg-Ca-0.15 | 200 (0.42 A/g) | 2837.5 | 15 | [ |
c-Alg-g-PAAm | 100 (1 C) | 836 | 15 | [ |
SA-250 | 150 (1.39 A/g) | 934 | 10 | [ |
CE55 | 1600 (8 A/g) | 1350 | 15 | [ |
CS-CG10%+6%GA | 100 | 2144 | 20 | [ |
AP | 100 (0.1 C) | 1517.9 | 20 | [ |
SSC4SA | 100 (1 A/g) | 2874 | 20 | [ |
starch/PEG | 300 (0.5 A/g) | ~1100 | 20 | [ |
cross-linked corn starch | 200 (0.5 C) | 2106 | 20 | [ |
c-XG-PAM | 1000 (2 A/g) | 1104 | 10 | [ |
PEC/PAA (10) | 100 (0.2 C) | 2386 | 20 | [ |
表2
以生物高分子为碳前体制备的硅碳复合材料总结"
生物高分子制备的硅碳复合材料 | 循环圈数 | 容量保持/(mA·h/g) | 硅含量/% | 参考文献 |
---|---|---|---|---|
Si-85 | 300 (0.2 A/g) | 2056 | 84.5 | [ |
PG/Si/Ni | 2000 (1 A/g) | 604.3 | 37.4 | [ |
Si/HC | 100 (0.2 C) | ~490 | ~15 | [ |
Si@SiO2@C | 200 (0.42 A/g) | 1071 | ~76 | [ |
PSC-30% Si-C | 100 (0.2 A/g) | 850 | 30.0 | [ |
SN-MCB | 500 (0.2 C) | 1440 | 44.0 | [ |
GCSi | 100 (0.2 A/g) | 676 | 25.0 | [ |
rGO/C@Si | 150 (0.42 A/g) | 1115.8 | 72.7 | [ |
Si@CTSC | 300 (1 A/g) | 1324 | 83.2 | [ |
Porous Si/C | 200 (0.5 C) | 782.1 | 65.0 | [ |
Si@C-AL-azo-NO2 | 150 (0.2 A/g) | 882 | 65 | [ |
Si/C composite | 200 (0.2 A/g) | 584.1 | ~30 | [ |
1 | ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. |
2 | DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: a battery of choices[J]. Science, 2011, 334(6058): 928-935. |
3 | THACKERAY M M, WOLVERTON C, ISAACS E D. Electrical energy storage for transportation—Approaching the limits of, and going beyond, lithium-ion batteries[J]. Energy & Environmental Science, 2012, 5(7): 7854-7863. |
4 | CHOI J W, AURBACH D. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nature Reviews Materials, 2016, 1(4): 1-16. |
5 | JIANG Z P, JIN L, HAN Z L, et al. Facile generation of polymer-alloy hybrid layers for dendrite-free lithium-metal anodes with improved moisture stability[J]. Angewandte Chemie International Edition, 2019, 58(33): 11374-11378. |
6 | JIN Y, ZHU B, LU Z D, et al. Challenges and recent progress in the development of Si anodes for lithium-ion battery[J]. Advanced Energy Materials, 2017, 7(23): 1700715. |
7 | CHAE S, KO M, KIM K, et al. Confronting issues of the practical implementation of Si anode in high-energy lithium-ion batteries[J]. Joule, 2017, 1(1): 47-60. |
8 | JIAO X X, YIN J Q, XU X Y, et al. Highly energy-dissipative, fast self-healing binder for stable Si anode in lithium-ion batteries[J]. Advanced Functional Materials, 2021, 31(3): 2005699. |
9 | CHEN Z, ZHANG H R, DONG T T, et al. Uncovering the chemistry of cross-linked polymer binders via chemical bonds for silicon-based electrodes[J]. ACS Applied Materials & Interfaces, 2020, 12(42): 47164-47180. |
10 | CHEN J, FAN X L, LI Q, et al. Electrolyte design for LiF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries[J]. Nature Energy, 2020, 5(5): 386-397. |
11 | 周军华, 罗飞, 褚赓, 等. 锂离子电池纳米硅碳负极材料研究进展[J]. 储能科学与技术, 2020, 9(2): 569-582. |
ZHOU J H, LUO F, CHU G, et al. Research progress on nano silicon-carbon anode materials for lithium ion battery[J]. Energy Storage Science and Technology, 2020, 9(2): 569-582. | |
12 | XU Q, LI J Y, SUN J K, et al. Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes[J]. Advanced Energy Materials, 2017, 7(3): 1601481. |
13 | JIN Y, LI S, KUSHIMA A, et al. Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%[J]. Energy & Environmental Science, 2017, 10(2): 580-592. |
14 | JIA H P, ZOU L F, GAO P Y, et al. High-performance silicon anodes enabled by nonflammable localized high-concentration electrolytes[J]. Advanced Energy Materials, 2019, 9(31): 1900784. |
15 | LI Z H, ZHANG Y P, LIU T F, et al. Silicon anode with high initial coulombic efficiency by modulated trifunctional binder for high-areal-capacity lithium-ion batteries[J]. Advanced Energy Materials, 2020, 10(20): 1903110. |
16 | LIU N, LU Z D, ZHAO J, et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes[J]. Nature Nanotechnology, 2014, 9(3): 187-192. |
17 | FROMM O, HECKMANN A, RODEHORST U C, et al. Carbons from biomass precursors as anode materials for lithium ion batteries: New insights into carbonization and graphitization behavior and into their correlation to electrochemical performance[J]. Carbon, 2018, 128: 147-163. |
18 | ZOU K X, GUAN Z X, DENG Y F, et al. Nitrogen-rich porous carbon in ultra-high yield derived from activation of biomass waste by a novel eutectic salt for high performance Li-ion capacitors[J]. Carbon, 2020, 161: 25-35. |
19 | CHEN M F, JIANG S X, HUANG C, et al. Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass-derived carbon for lithium-sulfur batteries[J]. ChemSusChem, 2017, 10(8): 1803-1812. |
20 | CHEN C J, WANG Z G, ZHANG B, et al. Nitrogen-rich hard carbon as a highly durable anode for high-power potassium-ion batteries[J]. Energy Storage Materials, 2017, 8: 161-168. |
21 | XU D F, CHEN C J, XIE J, et al. A hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries[J]. Advanced Energy Materials, 2016, 6(6): 1501929. |
22 | MA J Q, GAO L F, LI S P, et al. Dual play of chitin-derived N-doped carbon nanosheets enabling high-performance Na-SeS2 half/full cells[J]. Batteries & Supercaps, 2020, 3(2): 165-173. |
23 | LIU D J, JIANG Z P, ZHANG W, et al. Micron-sized SiOx/N-doped carbon composite spheres fabricated with biomass chitosan for high-performance lithium-ion battery anodes[J]. RSC Advances, 2020, 10(63): 38524-38531. |
24 | GAO L F, MA J Q, LI S P, et al. 2D ultrathin carbon nanosheets with rich N/O content constructed by stripping bulk chitin for high-performance sodium ion batteries[J]. Nanoscale, 2019, 11(26): 12626-12636. |
25 | SU A Y, LI J, DONG J J, et al. An amorphous/crystalline incorporated Si/SiOx anode material derived from biomass corn leaves for lithium-ion batteries[J]. Small, 2020, 16(24): 2001714. |
26 | HE Y Y, XU G, WANG C S, et al. Horsetail-derived Si@N-doped carbon as low-cost and long cycle life anode for Li-ion half/full cells[J]. Electrochimica Acta, 2018, 264: 173-182. |
27 | LIU J, KOPOLD P, VAN AKEN P A, et al. Energy storage materials from nature through nanotechnology: A sustainable route from reed plants to a silicon anode for lithium-ion batteries[J]. Angewandte Chemie, 2015, 127(33): 9768-9772. |
28 | DEVIC T, LESTRIEZ B, ROUÉ L. Silicon electrodes for Li-ion batteries. addressing the challenges through coordination chemistry[J]. ACS Energy Letters, 2019, 4(2): 550-557. |
29 | RAJEEV K K, KIM E, NAM J, et al. Chitosan-grafted-polyaniline copolymer as an electrically conductive and mechanically stable binder for high-performance Si anodes in Li-ion batteries[J]. Electrochimica Acta, 2020, 333: 135532. |
30 | WANG H W, FU J Z, WANG C, et al. A binder-free high silicon content flexible anode for Li-ion batteries[J]. Energy & Environmental Science, 2020, 13(3): 848-858. |
31 | SU W M, WAN R C, LIANG Y, et al. A novel 3D porous pseudographite/Si/Ni composite anode material fabricated by a facile method[J]. Dalton Transactions, 2020, 49(21): 7166-7173. |
32 | GUO R N, ZHANG S L, YING H J, et al. Preparation of an amorphous cross-linked binder for silicon anodes[J]. ChemSusChem, 2019, 12(21): 4838-4845. |
33 | PREMAN A N, LEE H, YOO J, et al. Progress of 3D network binders in silicon anodes for lithium ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(48): 25548-25570. |
34 | KOVALENKO I, ZDYRKO B, MAGASINSKI A, et al. A major constituent of brown algae for use in high-capacity Li-ion batteries[J]. Science, 2011, 334(6052): 75-79. |
35 | LIU J, ZHANG Q, ZHANG T, et al. A robust ion-conductive biopolymer as a binder for Si anodes of lithium-ion batteries[J]. Advanced Functional Materials, 2015, 25(23): 3599-3605. |
36 | HU J Z, WANG Y K, LI D W, et al. Effects of adhesion and cohesion on the electrochemical performance and durability of silicon composite electrodes[J]. Journal of Power Sources, 2018, 397: 223-230. |
37 | ZHANG L, ZHANG L Y, CHAI L L, et al. A coordinatively cross-linked polymeric network as a functional binder for high-performance silicon submicro-particle anodes in lithium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(44): 19036-19045. |
38 | GENDENSUREN B, OH E-S. Dual-crosslinked network binder of alginate with polyacrylamide for silicon/graphite anodes of lithium ion battery[J]. Journal of Power Sources, 2018, 384: 379-386. |
39 | LI Z H, JI J P, WU Q, et al. A new battery process technology inspired by partially carbonized polymer binders[J]. Nano Energy, 2020, 67: 104234. |
40 | CHAI L L, QU Q T, ZHANG L F, et al. Chitosan, a new and environmental benign electrode binder for use with graphite anode in lithium-ion batteries[J]. Electrochimica Acta, 2013, 105: 378-383. |
41 | LEE S H, LEE J H, NAM D H, et al. Epoxidized natural rubber/chitosan network binder for silicon anode in lithium-ion battery[J]. ACS Applied Materials & Interfaces, 2018, 10(19): 16449-16457. |
42 | CAO P-F, YANG G, LI B, et al. Rational design of a multifunctional binder for high-capacity silicon-based anodes[J]. ACS Energy Letters, 2019, 4(5): 1171-1180. |
43 | LING H Y, WANG C R, SU Z, et al. Amylopectin from glutinous rice as a sustainable binder for high-performance silicon anodes[J]. Energy & Environmental Materials, 2021, 4(2): 263-268. |
44 | JIN B Y, WANG D Y, SONG L N, et al. Biomass-derived fluorinated corn starch emulsion as binder for silicon and silicon oxide based anodes in lithium-ion batteries[J]. Electrochimica Acta, 2021, 365: 137359. |
45 | HAPUARACHCHI S N S, WASALATHILAKE K C, NERKAR J Y, et al. Mechanically robust tapioca starch composite binder with improved ionic conductivity for sustainable lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(26): 9857-9865. |
46 | ROHAN R, KUO T C, CHIOU C Y, et al. Low-cost and sustainable corn starch as a high-performance aqueous binder in silicon anodes via in situ cross-linking[J]. Journal of Power Sources, 2018, 396: 459-466. |
47 | ZHANG L, JIAO X X, FENG Z H, et al. A nature-inspired binder with three-dimensional cross-linked networks for silicon-based anodes in lithium-ion batteries[J]. Journal of Power Sources, 2021, 484: 229198. |
48 | WANG J T, WAN C C, HONG J L. Polymer blends of pectin/poly(acrylic acid) as efficient binders for silicon anodes in lithium-ion batteries[J]. ChemElectroChem, 2020, 7(14): 3106-3115. |
49 | LING M, XU Y N, ZHAO H, et al. Dual-functional gum arabic binder for silicon anodes in lithium ion batteries[J]. Nano Energy, 2015, 12: 178-185. |
50 | HUANG L H, LI C C. Effects of interactions between binders and different-sized silicons on dispersion homogeneity of anodes and electrochemistry of lithium-silicon batteries[J]. Journal of Power Sources, 2019, 409: 38-47. |
51 | HWANG G, KIM J M, HONG D, et al. Multifunctional natural agarose as an alternative material for high-performance rechargeable lithium-ion batteries[J]. Green Chemistry, 2016, 18(9): 2710-2716. |
52 | SHI Q T, ZHOU J H, ULLAH S, et al. A review of recent developments in Si/C composite materials for Li-ion batteries[J]. Energy Storage Materials, 2021, 34: 735-754. |
53 | SHEN T, YAO Z J, XIA X H, et al. Rationally designed silicon nanostructures as anode material for lithium-ion batteries[J]. Advanced Energy Materials, 2018, 20(1): 15. |
54 | ZHANG H, ZHANG X F, JIN H, et al. A robust hierarchical 3D Si/CNTs composite with void and carbon shell as Li-ion battery anodes[J]. Chemical Engineering Journal, 2019, 360: 974-981. |
55 | XU Q, SUN J K, YU Z L, et al. SiOx encapsulated in graphene bubble film: an ultrastable Li-ion battery anode[J]. Advanced Materials, 2018, 30(25): e1707430. |
56 | HUANG G, HAN J H, LU Z, et al. Ultrastable silicon anode by three-dimensional nanoarchitecture design[J]. ACS Nano, 2020, 14(4): 4374-4382. |
57 | SONG J J, GUO S W, REN D Z, et al. Rice husk-derived SiOx@carbon nanocomposites as a high-performance bifunctional electrode for rechargeable batteries[J]. Ceramics International, 2020, 46(8B): 11570-11576. |
58 | WANG Y, WANG X L, JIN H, et al. The synergetic effects of a multifunctional citric acid and rice husk derived honeycomb carbon matrix on a silicon anode for high-performance lithium ion batteries[J]. Sustainable Energy & Fuels, 2020, 4(5): 2583-2592. |
59 | REHMAN W U, WANG H F, MANJ R Z A, et al. When silicon materials meet natural sources: opportunities and challenges for low-cost lithium storage[J]. Small, 2021, 17(9): e1904508. |
60 | WANG L, GAO B, PENG C J, et al. Bamboo leaf derived ultrafine Si nanoparticles and Si/C nanocomposites for high-performance Li-ion battery anodes[J]. Nanoscale, 2015, 7(33): 13840-13847. |
61 | WONG D P, SURIYAPRABHA R, YUVAKUMAR R, et al. Binder-free rice husk-based silicon-graphene composite as energy efficient Li-ion battery anodes[J]. Journal of Materials Chemistry A, 2014, 2(33): 13437-13441. |
62 | LIU N A, HUO K F, MCDOWELL M T, et al. Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes[J]. Scientific Reports, 2013, 3(1): 1919. |
63 | MOHANTY A K, VIVEKANANDHAN S, PIN J M, et al. Composites from renewable and sustainable resources: Challenges and innovations[J]. Science, 2018, 362(6414): 536-542. |
64 | MIYASHIRO D, HAMANO R, UMEMURA K. A review of applications using mixed materials of cellulose, nanocellulose and carbon nanotubes[J]. Nanomaterials, 2020, 10(2): 186. |
65 | SHEN D Z, HUANG C F, GAN L H, et al. Rational design of Si@SiO2/C composites using sustainable cellulose as a carbon resource for anodes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(9): 7946-7954. |
66 | WEI R H, XU R H, ZHANG K Y, et al. Biological enzyme treatment of starch-based lithium-ion battery silicon-carbon composite[J]. Nanotechnology, 2020, 32(4): 045605. |
67 | KWON H J, HWANG J Y, SHIN H J, et al. Nano/microstructured silicon-carbon hybrid composite particles fabricated with corn starch biowaste as anode materials for Li-ion batteries[J]. Nano Letters, 2020, 20(1): 625-635. |
68 | PAREKH M H, SEDIAKO A D, NASERI A, et al. In situ mechanistic elucidation of superior Si-C-graphite Li-ion battery anode formation with thermal safety aspects[J]. Advanced Energy Materials, 2020, 10(2): 1902799. |
69 | YU L B, LIU J, HE S S, et al. N-doped rGO/C@Si composites using sustainable chitosan as the carbon source for lithium-ion batteries[J]. Applied Surface Science, 2020, 501: 144136. |
70 | LI L, FANG C, WEI W F, et al. Nano-ordered structure regulation in delithiated Si anode triggered by homogeneous and stable Li-ion diffusion at the interface[J]. Nano Energy, 2020, 72: 104651. |
71 | JIN H L, ZHU M S Q, LIU J, et al. Alkaline chitosan solution as etching phase to design Si@SiO2@N-carbon anode for lithium-ion battery[J]. Applied Surface Science, 2021, 541: 148436. |
72 | QIAO M, MEYSAMI S S, FERRERO G A, et al. Low-cost chitosan-derived N-doped carbons boost electrocatalytic activity of multiwall carbon nanotubes[J]. Advanced Functional Materials, 2018, 28(16): 7. |
73 | HAMMI N, CHEN S, DUMEIGNIL F, et al. Chitosan as a sustainable precursor for nitrogen-containing carbon nanomaterials: Synthesis and uses[J]. Materials Today Sustainability, 2020: 100053. |
74 | SHAO R, ZHU F, CAO Z J, et al. Heteroatom-doped carbon networks enabling robust and flexible silicon anodes for high energy Li-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(35): 18338-18347. |
75 | ZHAO T T, ZHU D L, LI W R, et al. Novel design and synthesis of carbon-coated porous silicon particles as high-performance lithium-ion battery anodes[J]. Journal of Power Sources, 2019, 439: 227027. |
76 | WANG H L, PU Y Q, RAGAUSKAS A, et al. From lignin to valuable products-strategies, challenges, and prospects[J]. Bioresource Technology, 2019, 271: 449-461. |
77 | ZHANG L L, CHEN K L, PENG L C. Comparative research about wheat straw lignin from the black liquor after soda-oxygen and soda-AQ pulping: Structural changes and pyrolysis behavior[J]. Energy & Fuels, 2017, 31(10): 10916-10923. |
78 | FENG Z Q, CHEN H L, LI H Q, et al. Preparation, characterization, and application of magnetic activated carbon for treatment of biologically treated papermaking wastewater[J]. Science of the Total Environment, 2020, 713: 136423. |
79 | XI Y B, HUANG S, YANG D J, et al. Hierarchical porous carbon derived from the gas-exfoliation activation of lignin for high-energy lithium-ion batteries[J]. Green Chemistry, 2020, 22(13): 4321-4330. |
80 | NIRMALE T C, KALE B B, VARMA A J. A review on cellulose and lignin based binders and electrodes: small steps towards a sustainable lithium ion battery[J]. International Journal of Biological Macromolecules, 2017, 103: 1032-1043. |
81 | TENHAEFF W E, RIOS O, MORE K, et al. Highly robust lithium ion battery anodes from lignin: An abundant, renewable, and low-cost material[J]. Advanced Functional Materials, 2014, 24(1): 86-94. |
82 | NIU X Y, ZHOU J Q, QIAN T, et al. Confined silicon nanospheres by biomass lignin for stable lithium ion battery[J]. Nanotechnology, 2017, 28(40): 405401. |
83 | DU L L, WU W, LUO C, et al. Lignin derived Si@C composite as a high performance anode material for lithium ion batteries[J]. Solid State Ionics, 2018, 319: 77-82. |
84 | CHEN T, HU J Z, ZHANG L, et al. High performance binder-free SiOx/C composite LIB electrode made of SiOx and lignin[J]. Journal of Power Sources, 2017, 362: 236-42. |
85 | CHEN T, ZHANG Q L, PAN J, et al. Low-temperature treated lignin as both binder and conductive additive for silicon nanoparticle composite electrodes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(47): 32341-32348. |
86 | LIU W W, LIU J, ZHU M H, et al. Recycling of lignin and Si waste for advanced Si/C battery anodes[J]. ACS Applied Materials & Interfaces, 2020, 12(51): 57055-57063. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[3] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[4] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[5] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[6] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[7] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[8] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[9] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[10] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[11] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[12] | 辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
[13] | 燕乔一, 吴锋, 陈人杰, 李丽. 锂离子电池负极石墨回收处理及资源循环[J]. 储能科学与技术, 2022, 11(6): 1760-1771. |
[14] | 沈秀, 曾月劲, 李睿洋, 李佳霖, 李伟, 张鹏, 赵金保. γ射线辐照交联原位固态化阻燃锂离子电池[J]. 储能科学与技术, 2022, 11(6): 1816-1821. |
[15] | 于春辉, 何姿颖, 张晨曦, 林贤清, 肖哲熙, 魏飞. 硅基负极与电解液化学反应的分析与抑制策略[J]. 储能科学与技术, 2022, 11(6): 1749-1759. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||