储能科学与技术 ›› 2021, Vol. 10 ›› Issue (6): 2144-2155.doi: 10.19799/j.cnki.2095-4239.2021.0228
收稿日期:
2021-05-25
修回日期:
2021-05-28
出版日期:
2021-11-05
发布日期:
2021-11-03
作者简介:
詹世英(1981—),男,博士,工程师,研究方向为锂离子电池设计与开发,E-mail:Shiying ZHAN1(), Dongxu YU2, Nan CHEN2, Fei DU2()
Received:
2021-05-25
Revised:
2021-05-28
Online:
2021-11-05
Published:
2021-11-03
摘要:
水系电池以其安全性高、环境友好、离子导电率高等优点,在规模储能领域展现出良好的应用前景。电荷载流子是二次电池关键的组成部分,决定着电池的机制和性能。相较于被广泛研究的金属离子作为载流子的二次电池,以非金属阳离子,如NH4+、H+、H3O+,作为电荷传输载体的研究却相对较少。与金属离子作为载流子相比,非金属离子载流子通常具有更小的水合离子半径、更低的摩尔质量,因此往往展现出更高的扩散速率与较长的循环寿命,且其制造成本更为低廉。然而,开发适于储存非金属离子的电极材料仍面临诸多挑战。本文对近几年相关研究报道进行总结。首先,介绍并讨论了非金属离子与金属离子作为载流子之间的差异;随后,总结了基于质子、水合氢离子、铵根离子和其他非金属载流子水系电池的最新研究进展;重点分析了由非金属离子存储所诱发新的电池化学与反应机制。最后,综合分析,认为通过材料结构优化工程,并且扩大电解液的工作电压区间,是有效提升水系非金属离子电池性能的必要途径之一。
中图分类号:
詹世英, 于东旭, 陈楠, 杜菲. 非金属阳离子水系二次电池研究进展[J]. 储能科学与技术, 2021, 10(6): 2144-2155.
Shiying ZHAN, Dongxu YU, Nan CHEN, Fei DU. Advances of aqueous batteries with non-metallic cation charge carriers[J]. Energy Storage Science and Technology, 2021, 10(6): 2144-2155.
1 | 曹翊, 王永刚, 王青, 等. 水系钠离子电池的现状及展望[J]. 储能科学与技术, 2016, 5(3): 317-323. |
CAO Y, WANG Y G, WANG Q, et al. Development of aqueous sodium ion battery[J]. Energy Storage Science and Technology, 2016, 5(3): 317-323. | |
2 | 刘未未, 王保峰, 李磊. 水系锂离子电池电极材料研究进展[J]. 储能科学与技术, 2014, 3(1): 9-20. |
LIU W W, WANG B F, LI L. Recent progress in electrode materials for aqueous lithium-ion batteries[J]. Energy Storage Science and Technology, 2014, 3(1): 9-20. | |
3 | 周安行, 蒋礼威, 岳金明, 等. Water-in-salt锂离子电解液研究进展[J]. 储能科学与技术, 2018, 7(6): 972-986. |
ZHOU A X, JIANG L W, YUE J M, et al. Research progress on lithium-based Water-in-salt electrolytes[J]. Energy Storage Science and Technology, 2018, 7(6): 972-986. | |
4 | 张添奥, 刘昊, 陈永翀, 等. 大容量电池储能的本质安全探索[J/OL]. 储能科学与技术, 2021, doi: 10.19799.j.cnki.2095-4239. 2021. 0145. |
ZHANG T A, LIU H, CHEN Y C, et al. The intrinsic safety of energy storage in high-capacity battery[J], Energy Storage Science and Technology, 2021, doi: 10.19799/j.cnki.2095-4239.2021.0145. | |
5 | LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2015, 7(1): 19-29. |
6 | DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935. |
7 | HUANG J H, GUO Z W, MA Y Y, et al. Recent progress of rechargeable batteries using mild aqueous electrolytes[J]. Small Methods, 2019, 3(1): doi: 10.1002/smtd.201800272. |
8 | JI X L. A paradigm of storage batteries[J]. Energy & Environmental Science, 2019, 12(11): 3203-3224. |
9 | ZHANG H, LIU X, LI H H, et al. Challenges and strategies for high-energy aqueous electrolyte rechargeable batteries[J]. Angewandte Chemie International Edition, 2021, 20(2): 598-616. |
10 | LI W, DAHN J R, WAINWRIGHT D S. Rechargeable lithium batteries with aqueous electrolytes[J]. Science, 1994, 264(5162): 1115-1118. |
11 | KÖHLER J, MAKIHARA H, UEGAITO H, et al. LiV3O8: Characterization as anode material for an aqueous rechargeable Li-ion battery system[J]. Electrochimica Acta, 2000, 46(1): 59-65. |
12 | WANG G J, FU L J, ZHAO N H, et al. An aqueous rechargeable lithium battery with good cycling performance[J]. Angewandte Chemie International Edition, 2006, 119(1/2): 299-301. |
13 | WANG H B, HUANG K L, ZENG Y Q, et al. Electrochemical properties of TiP2O7 and LiTi2(PO4)3 as anode material for lithium-ion battery with aqueous solution electrolyte[J]. Electrochimica Acta, 2007, 52(9): 3280-3285. |
14 | LUO J Y, CUI W J, HE P, et al. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte[J]. Nature Chemistry, 2010, 2(9): 760-765. |
15 | SUO L M, BORODIN O, GAO T, et al. "Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries[J]. Science, 2015, 350(6263): 938-943. |
16 | KIM H, HONG J, PARK K Y, et al. Aqueous rechargeable Li and Na ion batteries[J]. Chemical Reviews, 2014, 114(23): 11788-11827. |
17 | JIANG L W, LU Y X, ZHAO C L, et al. Building aqueous K-ion batteries for energy storage[J]. Nature Energy, 2019, 4(6): 495-503. |
18 | LEONARD D P, WEI Z X, CHEN G, et al. Water-in-salt electrolyte for potassium-ion batteries[J]. ACS Energy Letters, 2018, 3(2): 373-374. |
19 | YANG Y Q, TANG Y, FANG G Z, et al. Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode[J]. Energy & Environmental Science, 2018, 11(11): 3157-3162. |
20 | CHEN L, BAO J L, DONG X, et al. Aqueous Mg-ion battery based on polyimide anode and Prussian blue cathode[J]. ACS Energy Letters, 2017, 2(5): 1115-1121. |
21 | ZHAO Q, ZACHMAN M J, AL SADAT W I, et al. Solid electrolyte interphases for high-energy aqueous aluminum electrochemical cells[J]. Science Advances, 2018, 4(11): doi: 10.1126/sciadv. aau8131. |
22 | GHEYTANI S, LIANG Y L, WU F L, et al. An aqueous Ca-ion battery[J]. Advanced Science, 2017, 4(12): doi: 10.1002/advs. 201700465. |
23 | XING Z Y, WANG S, YU A P, et al. Aqueous intercalation-type electrode materials for grid-level energy storage: beyond the limits of lithium and sodium[J]. Nano Energy, 2018, 50: 229-244. |
24 | CHEN W, LI G D, PEI A, et al. A manganese-hydrogen battery with potential for grid-scale energy storage[J]. Nature Energy, 2018, 3(5): 428-435. |
25 | CHAO D L, ZHOU W H, XIE F X, et al. Roadmap for advanced aqueous batteries: From design of materials to applications[J]. Science Advances, 2020, 6(21): doi: 10.1126/sciadv.aba4098. |
26 | CHAO D L, FAN H J. Intercalation pseudocapacitive behavior powers aqueous batteries[J]. Chem, 2019, 5(6): 1359-1361. |
27 | ZHU Y H, YANG X, ZHANG X B. Hydronium ion batteries: A sustainable energy storage solution[J]. Angewandte Chemie International Edition, 2017, 56(23): 6378-6380. |
28 | JIANG H,HONG J, WU X, et al. Insights on the Proton Insertion Mechanism in the Electrode of Hexagonal Tungsten Oxide Hydrate[J]. J Am Chem Soc, 2018, 140: 11556-11559. |
29 | LIANG G J, WANG Y L, HUANG Z D, et al. Initiating hexagonal MoO3 for superb-stable and fast NH4+ storage based on hydrogen bond chemistry[J]. Advanced Materials, 2020, 32(14): doi: 10.1002/adma.201907802. |
30 | POHL R, ANTOGNINI A, NEZ F, et al. The size of the proton[J]. Nature, 2010, 466(7303): 213-216. |
31 | LIU Y F, PAN H G, GAO M X, et al. Advanced hydrogen storage alloys for Ni/MH rechargeable batteries[J]. Journal of Materials Chemistry, 2011, 21(13): 4743-4755. |
32 | LU Y H, WANG L, CHENG J G, et al. Prussian blue: A new framework of electrode materials for sodium batteries[J]. Chemical Communications, 2012, 48(52): 6544-6546. |
33 | QIAN J F, WU C, CAO Y L, et al. Prussian blue cathode materials for sodium-ion batteries and other ion batteries[J]. Advanced Energy Materials, 2018, 8(17): doi: 10.1002/aenm.201702619. |
34 | LEE J H, ALI G, KIM D H, et al. Metal-organic framework cathodes based on a vanadium hexacyanoferrate Prussian blue analogue for high-performance aqueous rechargeable batteries[J]. Advanced Energy Materials, 2017, 7(2): doi: 10.1002/aenm.201601491. |
35 | WU X Y, HONG J J, SHIN W, et al. Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries[J]. Nature Energy, 2019, 4(2): 123-130. |
36 | MARX D, TUCKERMAN M E, HUTTER J, et al. The nature of the hydrated excess proton in water[J]. Nature, 1999, 397: 601-604. |
37 | WU X Y, QIU S, XU Y K, et al. Hydrous nickel-iron Turnbull's blue as a high-rate and low-temperature proton electrode[J]. ACS Applied Materials & Interfaces, 2020, 12(8): 9201-9208. |
38 | PATIL N, MAVRANDONAKIS A, JÉRÔME C, et al. Polymers bearing catechol pendants as universal hosts for aqueous rechargeable H+, Li-ion, and post-Li-ion (mono-, di-, and trivalent) batteries[J]. ACS Applied Energy Materials, 2019, 2(5): 3035-3041. |
39 | EMANUELSSON R, STERBY M, STROMME M, et al. An all-organic proton battery[J]. Journal of the American Chemical Society, 2017, 139(13): 4828-4834. |
40 | STRIETZEL C, STERBY M, HUANG H, et al. An aqueous conducting redox-polymer-based proton battery that can withstand rapid constant-voltage charging and sub-zero temperatures[J]. Angewandte Chemie International Edition, 2020, 59(24): 9631-9638. |
41 | PEREZ A J, BEER R, LIN Z F, et al. Proton ion exchange reaction in Li3IrO4: A way to new H3+xIrO4 phases electrochemically active in both aqueous and nonaqueous electrolytes[J]. Advanced Energy Materials, 2018, 8(13): 1702855. |
42 | LEMAIRE P, SEL O, ALVES DALLA CORTE D, et al. Elucidating the origin of the electrochemical capacity in a proton-based battery HxIrO4 via advanced electrogravimetry[J]. ACS Applied Materials & Interfaces, 2020, 12(4): 4510-4519. |
43 | ZHAO Q, LIU L J, YIN J F, et al. Proton intercalation/de-intercalation dynamics in vanadium oxides for aqueous aluminum electrochemical cells[J]. Angewandte Chemie International Edition, 2020, 59(8): 3048-3052. |
44 | GUO Z W, HUANG J H, DONG X L, et al. An organic/inorganic electrode-based hydronium-ion battery[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-026-14748-5. |
45 | WANG X F, BOMMIER C, JIAN Z L, et al. Hydronium-ion batteries with perylenetetracarboxylic dianhydride crystals as an electrode[J]. Angewandte Chemie International Edition, 2017, 56(11): 2909-2913. |
46 | WANG C Y, ZHANG G, GE S, et al. Lithium-ion battery structure that self-heats at low temperatures[J]. Nature, 2016, 529(7587): 515-518. |
47 | LIAO B, LI H Y, XU M Q, et al. Designing low impedance interface films simultaneously on anode and cathode for high energy batteries[J]. Advanced Energy Materials, 2018, 8(22): doi: 10.1002/aenm.201800802. |
48 | YAN L, HUANG J H, GUO Z W, et al. Solid-state proton battery operated at ultralow temperature[J]. ACS Energy Letters, 2020, 5(2): 685-691. |
49 | WESSELLS C D, PEDDADA S V, MCDOWELL M T, et al. The effect of insertion species on nanostructured open framework hexacyanoferrate battery electrodes[J]. Journal of The Electrochemical Society, 2011, 159(2): A98-A103. |
50 | WU X, QI Y, HONG J J, et al. Rocking-chair ammonium-ion battery: A highly reversible aqueous energy storage system[J]. Angewandte Chemie International Edition, 2017, 56(42): 13026-13030. |
51 | WU X Y, XU Y K, JIANG H, et al. NH4+ topotactic insertion in Berlin green: an exceptionally long-cycling cathode in aqueous ammonium-ion batteries[J]. ACS Applied Energy Materials, 2018, 1(7): 3077-3083. |
52 | ZHANG Y D, AN Y F, YIN B, et al. A novel aqueous ammonium dual-ion battery based on organic polymers[J]. Journal of Materials Chemistry A, 2019, 7(18): 11314-11320. |
53 | LI C Y, WU J H, MA F X, et al. High-rate and high-voltage aqueous rechargeable zinc ammonium hybrid battery from selective cation intercalation cathode[J]. ACS Applied Energy Materials, 2019, 2(10): 6984-6989. |
54 | LI C Y, ZHANG D X, MA F X, et al. A high-rate and long-life aqueous rechargeable ammonium zinc hybrid battery[J]. ChemSusChem, 2019, 12(16): 3732-3736. |
55 | DONG S Y, SHIN W, JIANG H, et al. Ultra-fast NH4+ storage: strong H bonding between NH4+ and bi-layered V2O5[J]. Chem, 2019, 5(6): 1537-1551. |
56 | LI J Y, ZHENG C, QI L, et al. Storage behavior of isomeric quaternary alkyl ammonium cations in graphite electrodes for graphite/activated carbon capacitors[J]. Electrochimica Acta, 2017, 248: 342-348. |
57 | WEI Z X, SHIN W, JIANG H, et al. Reversible intercalation of methyl viologen as a dicationic charge carrier in aqueous batteries[J]. Nature Communications, 2019, 10(1): doi: 10.1038/s41467-019-11218-5. |
58 | LI H F, MA L T , HAN C P, et al. Advanced rechargeable zinc-based batteries: Recent progress and future perspectives[J]. Nano Energy, 2019, 62: 550-587. |
59 | KUNDU D, ADAMS B D, DUFFORT V, et al. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode[J]. Nature Energy, 2016, 1(10): doi: 10.1038/nenergy.2016.119. |
60 | MITCHELL J B, LO W C, GENC A, et al. Transition from battery to pseudocapacitor behavior via structural water in tungsten oxide[J]. Chemistry of Materials, 2017, 29(9): 3928-3937. |
61 | SUN W M, YEUNG M T, LECH A T, et al. High surface area tunnels in hexagonal WO3[J]. Nano Letters, 2015, 15(7): 4834-4838. |
62 | BORODIN O, SELF J, PERSSON K A, et al. Uncharted waters: Super-concentrated electrolytes[J]. Joule, 2020, 4(1): 69-100. |
63 | LIU Z X, HUANG Y, HUANG Y, et al. Voltage issue of aqueous rechargeable metal-ion batteries[J]. Chemical Society Reviews, 2020, 49(1): 180-232. |
64 | WU X Y, XU Y K, ZHANG C, et al. Reverse dual-ion battery via a ZnCl2 water-in-salt electrolyte[J]. Journal of the American Chemical Society, 2019, 141(15): 6338-6344. |
65 | RODRÍGUEZ-PÉREZ I A, ZHANG L, LEONARD D P, et al. Aqueous anion insertion into a hydrocarbon cathode via a water-in-salt electrolyte[J]. Electrochemistry Communications. 2019, 109: doi: 10.1016/j.elecom.2019.106599. |
[1] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[2] | 练文超, 雷励斌, 梁波, 王超, 魏磊, 田志鹏, 刘建平, 杨华政, 梁家健, 施涛. 质子导体固体氧化物电化学装置中氨的利用与合成[J]. 储能科学与技术, 2021, 10(6): 1998-2007. |
[3] | 柯承志, 肖本胜, 李苗, 陆敬予, 何洋, 张力, 张桥保. 电极材料储锂行为及其机制的原位透射电镜研究进展[J]. 储能科学与技术, 2021, 10(4): 1219-1236. |
[4] | 余一凡, 顾玉萍, 李驰麟. 氟离子穿梭电池研究进展[J]. 储能科学与技术, 2020, 9(1): 217-238. |
[5] | 孟奇, 刘晓辉, 孙铭泽, 王其洋, 毕红. MXene/银纳米线超级电容器电极材料的电化学性能[J]. 储能科学与技术, 2019, 8(6): 1126-1131. |
[6] | 杨岑玉, 胡晓, 李雅文, 邢作霞, 高运兴, 董佳仪, 徐桂芝. 流固耦合固体相变蓄热建模与分析方法[J]. 储能科学与技术, 2019, 8(3): 538-543. |
[7] | 苏秀丽, 杨霖霖, 周禹, 林友斌, 余姝媛. 全钒液流电池电极研究进展[J]. 储能科学与技术, 2019, 8(1): 65-74. |
[8] | 刘梦云, 谷天天, 周敏, 王康丽, 程时杰, 蒋凯. 共轭羰基化合物作为钠/钾离子电池电极材料的研究进展[J]. 储能科学与技术, 2018, 7(6): 1171-1181. |
[9] | 许晓雄,李泓. 为全固态锂电池“正名”[J]. 储能科学与技术, 2018, 7(1): 1-. |
[10] | 任 洋1,颉莹莹1, 2,陈宗海1,马紫峰2. 同步辐射X-射线和中子衍射在储能材料研究中应用[J]. 储能科学与技术, 2017, 6(5): 855-863. |
[11] | 谢清水,王来森,彭栋梁. “高效纳米储能材料与器件的基础研究”项目介绍[J]. 储能科学与技术, 2017, 6(1): 162-164. |
[12] | 金玉红, 王莉, 尚玉明, 高剑, 李建军, 何向明. 尖晶石结构NiCo2O4材料在超级电容器中的应用进展[J]. 储能科学与技术, 2015, 4(1): 44-54. |
[13] | 吴小员, 沈越, 胡先罗, 黄云辉, 余卓平. 增程式电动汽车及其动力锂离子电池[J]. 储能科学与技术, 2014, 3(6): 565-574. |
[14] | 贾志军, 王俊, 王毅. 超级电容器电极材料的研究进展[J]. 储能科学与技术, 2014, 3(4): 322-338. |
[15] | 刘未未, 王保峰, 李磊. 水系锂离子电池电极材料研究进展[J]. 储能科学与技术, 2014, 3(1): 9-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||