储能科学与技术 ›› 2014, Vol. 3 ›› Issue (4): 322-338.doi: 10.3969/j.issn.2095-4239.2014.04.006
贾志军1, 王俊2, 王毅1
收稿日期:
2014-02-12
出版日期:
2014-07-01
发布日期:
2014-07-01
通讯作者:
王毅,研究员,从事燃料电池催化剂,超级电容器等方面的研究,E-mail:wangyi@.ipe.ac.cn.
作者简介:
贾志军(1983--),男,博士,研究方向为化学电源设计及新型电极材料制备,E-mail:jiazhijunwin@163.com;
基金资助:
JIA Zhijun1, WANG Jun2, WANG Yi1
Received:
2014-02-12
Online:
2014-07-01
Published:
2014-07-01
摘要: 超级电容器是一种利用界面双电层储能或在电极材料表面及近表面发生快速可逆氧化还原反应而储能的装置,因其高比功率和长循环寿命等特点而具有广阔的应用前景,高性能电极材料是当前超级电容器研究的重点.本文简单介绍了超级电容器电极材料的分类,并对碳素材料,过渡金属氧化物,导电聚合物等三类超级电容器电极材料及其复合材料的研究进展进行了简单论述.
中图分类号:
贾志军, 王俊, 王毅. 超级电容器电极材料的研究进展[J]. 储能科学与技术, 2014, 3(4): 322-338.
JIA Zhijun, WANG Jun, WANG Yi. Research progress of the electrode materials for electrochemical capacitors[J]. Energy Storage Science and Technology, 2014, 3(4): 322-338.
[1] Wang Kang(王康),Yu Aimei(余爱梅),Zheng Huajun(郑华均). Electrode materials for super-capacitor[J]. Zhejiang Chemical Industry (浙江化工),2010,41(4):18-22. [2] Xiao Chao(肖超),Tang Bin(唐斌),Wu Mengqiang(吴孟强),Zhang Shuren(张树人). Research progress of supercapacitor electrode materials[J]. Insulating Materials (绝缘材料),2007,40(1):44-47. [3] Yuan Lei(袁磊),Wang Zhaoyang(王朝阳),Fu Zhibing(付志兵),Zhang Houqiong(张厚琼),Tang Yongjian(唐永建). Research progress in electrode materials for supercapacitor[J]. Materials Review (材料导报),2010,24(9):11-14. [4] Wang Xingyan(汪形艳),Wang Xianyou(王先友),Huang Weiguo(黄伟国). Research on the electrode materials for supercapacitor[J]. Battery (电池),2004,34(3):192-193. [5] Zhu Xiufeng(朱修锋),Jing Xiaoyan(景晓燕),Zhang Milin(张密林). Progress on metal oxides-based supercapacitors and their applications[J]. Journal of Functional Materials and Devices (功能材料与器件学报),2002,8(3):325-330. [6] Simon P,Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials ,2008,7:845-854. [7] Frackowiak E. Carbon materials for supercapacitor application[J]. Physical Chemistry Chemical Physics ,2007,9:1774-1785. [8] Zha Quanxing(查全性). 电极过程动力学导论[M]. Beijing:Science Press,2002. [9] Cheng Xinqun(程新群). 化学电源[M]. Beijing:Chemical Industry Press,2008. [10] Yuan Guohui(袁国辉). Electrochemical Capacitor(电化学电容器)[M]. Beijing:Chemical Industry Press,2006. [11] Wu Xuran(吴旭冉),Jia Zhijun(贾志军),Ma Hongyun(马洪运),Liao Sida(廖斯达),Wang Baoguo(王保国). Application of electrochemistry(Ⅱ) Development and application of electrochemical capacitor[J]. Energy Storage Science and Technology (储能科学与技术),2013,2(6):636-641. [12] Momma T,Liu X J,Osaka T,Ushio Y,Sawada Y. Electrochemical modification of active carbon fiber electrode and its application to double-layer capacitor[J]. Journal of Power Sources ,1996,60:249-253. [13] Ma C,Song Y,Shi J L,Zhang D Q,Zhai X L,Zhong M,Guo Q G,Liu L. Preparation and one-step activation of microporous carbon nanofibers for use as supercapacitor electrodes[J]. Carbon ,2013,51:290-300. [14] Du X,Zhao W,Wang Y,Wang C Y,Chen M M,Qi T,Hua C. Preparation of activated carbon hollow fibers from ramie at low temperature for electric double-layer capacitor applications[J]. Bioresource Technology ,2013,149:31-37. [15] Li Wencui(李文翠),Lu Anhui(陆安慧),GuoShucai(郭树才). Preparation, properties and application of carbon aeroge[J]. Carbon Techniques (碳素技术),2001,113:17-20. [16] Pekala R W. Organic aerogels form the polycondensation of resorcinol with formaldehyde[J]. Journal of Materials Science ,1989,24:3221-3227. [17] Pekala R W,Farmer J C,Alviso C T,Tran T D,Mayer S T,Miller J M,Dunn B. Carbon aerogels for electrochemical applications[J]. Journal of Non-Crystalline Solids ,1998,224:74-80. [18] Wu D C,Chen X,Lu S H,Liang Y R,Xu F,Fu R W. Study on synergistic effect of ordered mesoporous carbon and carbon aerogel during electrochemical charge-discharge process[J]. Microporous and Mesoporous Materials ,2013,131:261-264. [19] Hwang S W,Hyun S H. Capacitance control of carbon aerogel electrodes[J]. Journal of Non-Crystalline Solids ,2004,347:238-245. [20] Zhu Z J,Hu Y J,Jiang H,Li C Z. A three-dimensional ordered mesoporous carbon/carbon nanotubes nanocomposites for supercapacitors[J]. Journal of Power Sources ,2014,247:402-408. [21] Bose S,Kuila T,Mishra A K,Rajasekar R,Kim N H,Lee J H. Carbon-based nanostructured materials and their composites as supercapacitor electrodes[J]. Jouranl of Materials Chemistry ,2012,22:767-784. [22] Aboutalebi S H,Chidembo A T,Salari M,Konstantinov K,Wexler D,Liu H K,Dou S X. Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitor[J]. Energy and Environmental Sciences ,2011,4:1855-1865. [23] Niu Z Q,Zhou W Y,Chen J,Feng G X,Li H,Ma W J,Li J Z,Dong H B,Ren Y,Zhao D,Xie S S. Compact-designed supercapacitors using free-standing single-walled carbon nanotube films[J]. Energy and Environmental Sciences ,2011,4:1440-1446. [24] Naoi K,Naoi W,Aoyagi S,Miyamoto J I,Kamino T. New generation "nanohybrid supercapacitor"[J]. Accounts of Chemical Research ,2013,46(5):1075-1083. [25] Zhang L L,Zhao X S. Carbon-based materials as supercapacitor electrodes[J]. Chem. Soc . Rev .,2009,38:2520-2531. [26] He Y M,Chen W J,Gao G T,Zhou J Y,Li X D,Xie E Q. An overview of carbon materials for flexible electrochemical capacitors[J]. Nanoscale ,2013,5:8799-8820. [27] Hse Y K,Chen Y C,Lin Y G,Chen L C,Chen K H. High-cell-voltage supercapacitor of carbon nanotube/carbon cloth operating in neutral aqueous solution[J]. Journal of Materials Chemistry ,2012,22:3383-3387. [28] Zhang C G,Peng Z W,Lin J,Zhu Y,Ruan G D,Hwang C C,Lu W,Hauge R H,Tour J M. Splitting of a vertical multiwalled carbon nanotube carpet to a graphene nanoribbon carpet and its use in superapacitors[J]. ACS Nano ,2013,7(6):5151-5159. [29] Chen Q,Meng Y N,Hu C G,Zhao Y,Shao H B,Chen N,Qu L T. MnO 2 -modified hierarchical graphene fiber electrochemical supercapacitor[J]. Journal of Power Sources ,2014,247;32-39. [30] Huang X,Qi X Y,Boey F,Zhang H. Graphene-based composites[J]. Chem. Soc. Rev. ,2012,41:666-686. [31] Xu C H,Xu B H,Gu Y,Xiong Z G,Jing Sun J,Zhao X S. Graphene-based electrodes for electrochemical energy storage[J]. Energy and Environmental Science ,2013,6:1388-1414. [32] Stoller M D,Park S,Zhu Y W,An J H,Ruoff R S. Graphene-based ultracapacitors[J]. Nano Letters ,2008,8(10):3498-3502. [33] Shao Q G,Tang J,Lin Y X,Zhang F F,Yuan J S,Zhang H,Shinya N,Qin L C. Synthesis and characterization of graphene hollow spheres for application in supercapacitors[J]. Journal of Materials Chemistry A ,2013,1:15423-15428. [34] Lee J H,Park N,Kim B G, et al . Restacking-inhibited 3D reduced graphene oxide for high performance supercapacitor electrodes[J]. ACS Nano ,2013,7(10):9366-9374. [35] Lv Y,Li H Q,Xie Y, et al . Facile synthesis and electrochemical properties of MnO 2 /carbon nanotubes[J]. Particuology ,2013,http://dx.doi.org/10.1016/j.partic.2012.12.006 [36] Dubal D P,Dhawale D S,Salunkhe R R,Lokhande C D. A novel chemical synthesis of Mn 3 O 4 thin film and its stepwise conversion into birnessite MnO 2 during super capacitive studies[J]. Journal of Electroanalytical Chemistry ,2010,647:60-65. [37] Yu P,Zhang X,Chen Y,Ma Y W. Solution-combustion synthesis of ε-MnO 2 for supercapacitors[J]. Materials Letters ,2010,64:61-64. [38] Wang J G,Yang Y,Huang Z H,Kang F Y. A high-performance asymmetric supercapacitor based on carbon and carbon-MnO 2 nanofiber electrodes[J]. Carbon ,2013,61:190-199. [39] Alhebshi N A,Rakhi R B,Alshareef H N. Conformal coating of Ni(OH) 2 nanoflakes on carbon fibers by chemical bath deposition for efficient supercapacitor electrodes[J]. Journal of Materials Chemistry A ,2013,doi:10.1039/c3ta12936e [40] Chen F,Zhou W J,Yao H F,Fan P,Yang J T,Fei Z D,Zhong M Q. Self-assembly of NiO nanoparticles in lignin-derived mesoporous carbons for supercapacitor applications[J]. Green Chemistry ,2013,15:3057-3063. [41] Xing Z C,Chu Q X,Ren X B, et al . Ni 3 S 2 coated ZnO array for high-performance supercapacitors[J]. Journal of Power Sources ,2014,245:463-467. [42] Huang J C,Xu P P,Cao D X, et al . Asymmetric supercapacitors based on Ni(OH) 2 nanosheets and activated carbon with high energy density[J]. Journal of Power Sources ,2014,246:371-376. [43] Xue T,Lee J M. Capacitive behavior of mesoporous Co(OH) 2 nanowires[J]. Journal of Power Sources ,2014,245:194-202. [44] Yuan C Z,Gao B,Su L H, et al . Interface synthesis of mesoporous MnO 2 and its electrochemical capacitive behaviors[J]. Journal of Colloid and Interface Science ,2008,322:545-550. [45] Wu Z S,Wang D W,Ren W C, et al . Anchoring hydrous RuO 2 on graphene sheets for high-performance electrochemical capacitors[J]. Advanced Functional Materials ,2010,20:3595-3602. [46] Salunkhe R R,Jang K H,Lee S W,Ahn H J. Aligned nickel-cobalt hydroxide nanorod arrays for electrochemical pseudocapacitor application[J]. RSC Advances ,2012,2:3190-3193. [47] Tang W,Liu L L,Tian S, et al ,Aqueous supercapacitors of high energy density based on MoO 3 nanoplates as anode material[J]. Chemistry Communication ,2011,47:10058-10060. [48] Mondal C,Ganguly M,Manna P K, et al . Fabrication of porous Co(OH) 2 architecture at room temperature:A high performance supercapacitor[J]. Langmuir ,2013,29:9179-9187. [49] He Y M,Chen W J,Li X D, et al . Freestanding three-dimensional graphene/MnO 2 composite networks as ultralight and flexible supercapacitor electrodes[J]. ACS Nano ,2013,7(1):174-182. [50] Shi W H,Zhu J X,Sim D H, et al . Achieving high specific charge capacitances in Fe 3 O 4 /reduced graphene oxide nanocomposites[J]. Journal of Materials Chemistry ,2011,21:3422-3427. [51] Lee H Y,Goodenough J B. Supercapacitor behavior with KCl electrolyte[J]. Journal of Solid State Chemistry ,1999,144:220-223. [52] Zhu G,Deng L J,Wang J F, et al . Hydrothermal preparation and the capacitance of hierarchical MnO 2 nanoflower[J]. Colloids and Surfaces A : Physicochemical and Engineering Aspects ,2012,434:42-48. [53] Zhang L,Xu Y. Jin D,Xie Y. Well-aligned molybdenum oxide nanorods on metal substrates:solution-based synthesis and their electrochemical capacitor application[J]. Journal of Materials Chemistry ,2010,20:7135-7143. [54] Liu D Q,Wang X,Wang X B, et al . Ultrathin nanoporous Fe 3 O 4 -carbon nanosheets with enhanced supercapacitor performance[J]. Journal of Materials Chemistry A ,2013,1:1952-1955. [55] Ji J Y,Zhang L L,Ji H M, et al . Nanoporous Ni(OH) 2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor[J]. ACS Nano ,2013,7(7):6237-6243. [56] Lu X H,Huang X,Xie S L, et al . Controllable synthesis of porous nickel-cobalt oxide nanosheets for supercapacitor[J]. Journal of Materials Chemistry ,2012,22:13357-13364. [57] Xu K B,Zou R J,Li W Y, et al . Self-assembling hybrid NiO/Co 3 O 4 ultrathin and mesoporous nanosheets into flower-like architechtures for supercapacitor[J]. Journal of Materials Chemistry A ,2013,1:9107-9113. [58] Liang K,Tang X Z,Hu W C. High-performance three-dimensional nanoporous NiO film as a supercapacitor elect[J]. Journal of Materials Chemistry ,2012,22:11062-11067. [59] Li J T,Zhao W,Huang F Q, et al . Single-crystalline Ni(OH) 2 and NiO nanoplatelet arrays as supercapacitor electrodes[J]. Nanoscale ,2011,3:5103-5109. [60] Singh Ashutosh K,Sarkar Debasish,Khan Gobinda Gopal, et al . Unique hydrogenated Ni/NiO core/shell 1D nano-heterostructures with superior electrochemical performances as supercapacitors[J]. Journal of Materials Chemistry A ,2013,1:12759-12767. [61] Ghenaatian H R,Mousavi M F,Rahmanifar M S. High performance hybrid supercapacitor based on two nanostructured conducting polymers:Self-dopped polyaniline and polypyrrole nanofibers[J]. Electrochimica Acta ,2012,78:212-222. [62] Dhawale D S,Vinu A,Lokhande C D. Stable nanostructured polyaniline electrode for supercapacitor application[J]. Electrochimica Acta ,2011,56:9482-9487. [63] Dhawale D S,Dubal D P,Jamadade V S, et al . Fuzzy nanofibrous network of polyaniline electrode for supercapacitor application[J]. Synthetic Metals ,2010,160:519-522. [64] Zhao X,Johnston C,Grant P S. A noval hybrid supercapacitor with a carbon nanotube cathode and an iron oxide/carbon nanotube composite anode[J]. Journal of Materials Chemistry ,2009,19:8755-8760. [65] Chen S,Zhu J W,Zhou H,Wang X. One-step synthesis of low defect density carbon nanotube-doped Ni(OH) 2 nanosheets with improved electrochemical performances[J]. RSC Advances ,2011,1:484-489. [66] Salunkhe R R,Jang K,Lee S W, et al . Binary metal hydroxide nanorods and multi-walled carbon nanotube composites for electrochemical energy storage applications[J]. Journal of Materials Chemistry ,2012,22:21630-21635. [67] Lei Z B,Shi F H,Lu L. Incorporation of MnO 2 -coated carbon nanotubes between graphene sheets as supercapacitor electrode[J]. ACS Applied Materials & Interfaces ,2012,4:1058-1064. [68] Reddy A L M,Shaijumon M M,Gowda S R,Ajayan P M. Multisegmented Au-MnO 2 /carbon nanotube hybrid coaxial arrays for high-power supercapacitor applications[J]. Journal of Physical Chemistry C ,2010,114:658-663. [69] Reddy A L M,Ramaprabhu S. Nanocrystalline metal oxides dispersed multiwalled carbon nanotubes as supercapacitor electrodes[J]. Journal of Physical Chemistry C ,2007,111:7727-7734. [70] Wang X,Han X D,Lim M F, et al . Nickel cobalt oxide-single wall carbon nanotube composite material for superior cycling stability and high-performance supercapacitor application[J]. The Journal of Physical Chemistry C ,2012,116:12448-12454. [71] Lee J W,Hall A S,Kim J D,Mallouk T E. A facile and template-free hydrothermal synthesis of Mn 3 O 4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability[J]. Chemistry of Materials ,2012,24:1158-1164. [72] Ghosh D,Giri S,Das C K. Preparation of CTAB-assisted hexagonal platelet Co(OH) 2 /graphene hybrid composite as efficient supercapacitor electrode material[J]. ACS Sustainable Chemistry and Engineering ,2013,1:1135-1142. [73] Li Z P,Wang J Q,Niu L Y, et al . Rapid synthesis of graphene/cobalt hydroxide composite with enhanced electrochemical performance for supercapacitors[J]. Journal of Power Sources ,2014,245:224-231. [74] Wang Q H,Jiao L F,Du H M, et al . Fe 3 O 4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors[J]. Journal of Power Sources ,2014,245:101-106. [75] Xiao Y H,Cao Y B,Gong Y Y, et al . Electrolyte and composition effects on the performances of asymmetric supercapacitors constructed with Mn 3 O 4 nanoparticles-graphene nanocomposites[J]. Journal of Power Sources ,2014,246:926-933. [76] Dong X C,Xu H,Wang X W,Huang Y X, et al . 3D graphene-cobalt oxide electrode for high-performances supercapacitor and enzymeless glucose detection[J]. ACS Nano ,2012,6(4):3206-3213. [77] Li Z P,Mi Y J,Liu X H, et al . Flexible graphene/MnO 2 composite papers for supercapacitor electrodes[J]. Journal of Materials Chemistry ,2011,21:14706-14711. [78] Huang S,Zhu G N,Zhang C, et al . Immobilization of Co-Al layered double hydroxides on graphene oxide nanosheets:growth mechanism and supercapacitor studies[J]. Applied Materials & Interfaces ,2012,4:2242-2249. [79] Zhang H T,Zhang X,Zhang D C, et al . One-step electrophoretic deposition of reduced graphene oxide and Ni(OH) 2 composite films for controlled syntheses supercapacitor electrodes[J]. The Journal of Physical Chemistry B ,2013,117:1616-1627. [80] Wang B,Park J,Su D W, et al . Solvothermal synthesis of CoS 2 -graphene nanocomposite material for high-performanc supercapacitors[J]. Journal of Materials Chemistry ,2012,22:15750-15756. [81] Li F H,Song J F,Yang H F, et al . One-step synthesis of graphene/SnO 2 nanocomposites and its application in electrochemical supercapacitors[J]. Nanotechnology ,2009,20:455602. [82] Li B J,Cao H Q. ZnO@graphene composite with enhanced performance for the removal of dye from water[J]. Journal of Materials Chemistry ,2011,21:3346-3349. [83] Wu Z S,Wang D W,Ren W C, et al . Anchoring hydrous RuO 2 on graphene sheets for high-performance electrochemical capacitors[J]. Advanced Functional Materials ,2010,20:3595-3602. [84] Zhu Y G,Cao G S,Sun C Y, et al. Design and synthesis of NiO nanoflakes/graphene nanocomposites as high performance electrodes of pseudocapacitor[J]. RSC Advances ,2013,3:19409-19415. [85] Ge J,Cheng G H,Chen L W. Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films[J]. Nanoscale ,2011,3:3084-3088. [86] Liu H L,Wang Y,Gou X L, et al . Three-dimensional graphene/polyaniline composite material for high-performance supercapacitor applications[J]. Materials Science and Engineering B ,2013,178:293-298. [87] Sumboja A,Foo C Y,Yan J, et al . Significant electrochemical stability of manganese dioxide/polyaniline coaxial nanowires by self-terminated double surfactant polymerization for pseudocapacitor electrode[J]. Journal of Materials Chemistry ,2012,22:23921-23928. [88] Zhou C,Zhang Y W,Li Y Y,Liu J P. Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor[J]. Nano Letters ,2013,13:2078-2085. [89] Kim J Y,Lee S H,Yan Y F, et al . Controlled synthesis of aligned Ni-NiO core-shell nanowire arrays on glass substrates as a new supercapacitor electrode[J]. RSC Advances ,2012,2:8281-8285. [90] Huang Y,Li Y Y,Hu Z Q, et al . A carbon modified MnO 2 nanosheet array as a stable high-capacitance supercapacitor electrode[J]. Journal of Materials Chemistry A ,2013,1:9809-9813. [91] Zhang Q L,Zhang Y W,Gao Z H, et al . A facile synthesis of platinum nanoparticle decorated graphene by one step γ-ray induced reduction for high rate supercapacitor[J]. Journal of Materials Chemistry C ,2013,1:321-328. [92] Lin Y Y,Yeh M H,Tsai J T, et al . A novel core-shell multi-walled carbon nanotube@graphene oxide nanoribbon heterostructure as a potential supercapacitor material[J]. Journal of Materials Chemistry A ,2013,1:11237-11245. [93] Zhao X,Johnston C,Grant P S. A novel hybrid supercapacitor with a carbon nanotube cathode and an iron oxide/carbon nanotube composite anode[J]. Journal of Materials Chemistry ,2009,19:8755-8760. [94] Jost K,Perez C R,McDonough J K, et al . Carbon coated textiles for flexible energy storage[J]. Energy and Environmental Science ,2011,4:5060-5067. [95] Wang Y,Shi Z Q,Huang Y, et al . Supercapacitor devices based on graphene materials[J]. Journal of Physical Chemistry C ,2009,113:13102-13107. [96] Kim M S,Carraro C,Carraro C, et al . Cycling characteristics of high energy density,electrochemically activated porous-carbon supercapacitor electrodes in aqueous electrolytes[J]. Journal of Materials Chemistry A ,2013,1:10518-10523. [97] Niu Z Q,Luan P S,Shao Q, et al . A "skeleton/skin" strategy for preparing ultrathin free-standing single-walled carbon nanotube/polyaniline films for high performance supercapacitor electrodes[J]. Energy& Environmental Science ,2012,5:8726-8733. [98] Jiang H,Lee P S,Li C Z. 3D carbon based nanostructures for advanced supercapacitors[J]. Energy&Environmental Science ,2013,6:641-653. [99] Zhang J T,Jiang J W,Li H L,Zhao X S. A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes[J]. Energy & Environmental Science ,2011,4:4009-4015. [100] Lin L Y,Yeh M H,Tsai J T, et al . A novel core-shell multi-walled carbon nanotube@graphene oxide nanoribbon heterostructure as a potential supercapacitor material[J]. Journal of Materials Chemistry A ,2013,1:11237-11245. [101] Liu X H,Zhou L,Zhao Y Q, et al . Hollow,spherical nitrogen-rich porous carbon shells obtained from a porous organic framework for the supercapacitor[J]. Applied Materials & Interfaces ,2013,5:10280-10287. [102] Dennison C R,Beidaghi M,Hatzell K B, et al . Effects of flow cell design on charge percolation and storage in the carbon slurry electrodes of electrochemical flow capacitors[J]. Journal of Power Sources ,2014,247:489-496. [103] Yun Y S,Lee M E,Joo M J,Jin H J. High-performance supercapacitors based on freestanding carbon-based composite paper electrodes[J]. Journal of Power Sources ,2014,246:540-547. [104] Duong B,Yu Z N,Gangopadhyay P, et al . High throughput printing of nanostructured carbon electrodes for supercapacitors[J]. Advanced Materials ,2013,doi:10.1002/admi.201300014. [105] Tamilarasan P,Rammaprabhu S. Graphene based all-solid-state supercapacitors with ionic liquid incorporated polyacrylonitrile electrolye[J]. Energy ,2013,51:374-381. [106] Yuan L Y,Lu X H,Xiao X, et al . Flexible solid-state supercapacitors based on carbon nanoparticles/MnO 2 nanorods hybrid structures[J]. ACS Nano ,2012,6(1):656-661. |
[1] | 王宇作, 卢颖莉, 邓苗, 杨斌, 于学文, 荆葛, 阮殿波. 超级电容器自放电的研究进展[J]. 储能科学与技术, 2022, 11(7): 2114-2125. |
[2] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[3] | 林楠, KREWER Ulrike, ZAUSCH Jochen, STEINER Konrad, 林海波, 冯守华. 电化学能量储存和转换体系多物理场模型的建立及其应用[J]. 储能科学与技术, 2022, 11(4): 1149-1164. |
[4] | 郭铁柱, 周迪, 张传芳. MXenes胶体氧化的调控策略及其对超级电容器性能的影响[J]. 储能科学与技术, 2022, 11(4): 1165-1174. |
[5] | 佟永丽, 武祥. 金属有机框架衍生的Co3O4 电极材料及其电化学性能[J]. 储能科学与技术, 2022, 11(3): 1035-1043. |
[6] | 岳博文, 佟佳欢, 刘玉文, 霍锋. 离子液体电解液的模拟计算方法及应用[J]. 储能科学与技术, 2022, 11(3): 897-911. |
[7] | 乔亮波, 张晓虎, 孙现众, 张熊, 马衍伟. 电池-超级电容器混合储能系统研究进展[J]. 储能科学与技术, 2022, 11(1): 98-106. |
[8] | 韩雪, 邓伟, 周旭峰, 刘兆平. 石墨烯在储能领域应用的专利分析[J]. 储能科学与技术, 2022, 11(1): 335-349. |
[9] | 练文超, 雷励斌, 梁波, 王超, 魏磊, 田志鹏, 刘建平, 杨华政, 梁家健, 施涛. 质子导体固体氧化物电化学装置中氨的利用与合成[J]. 储能科学与技术, 2021, 10(6): 1998-2007. |
[10] | 詹世英, 于东旭, 陈楠, 杜菲. 非金属阳离子水系二次电池研究进展[J]. 储能科学与技术, 2021, 10(6): 2144-2155. |
[11] | 乔志军, 张希, 陈雪龙, 于学文, 屠建飞, 阮殿波. 动力型双电层电容器过载使用的性能[J]. 储能科学与技术, 2021, 10(4): 1439-1445. |
[12] | 柯承志, 肖本胜, 李苗, 陆敬予, 何洋, 张力, 张桥保. 电极材料储锂行为及其机制的原位透射电镜研究进展[J]. 储能科学与技术, 2021, 10(4): 1219-1236. |
[13] | 毕志杰, 赵宁, 郭向欣. 基于氧化钨和普鲁士蓝的可变色超级电容器[J]. 储能科学与技术, 2021, 10(3): 952-957. |
[14] | 王凯, 侯朝霞, 李思瑶, 屈晨滢, 王悦, 孔佑健. 可拉伸全固态超级电容器的研究进展[J]. 储能科学与技术, 2021, 10(3): 887-895. |
[15] | 陈帅, 陈灵, 江浩. 氮掺杂无定形氧化钒纳米片阵列用于快充型准固态超级电容器[J]. 储能科学与技术, 2021, 10(3): 945-951. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||