储能科学与技术 ›› 2017, Vol. 6 ›› Issue (5): 855-863.doi: 10.12028/j.issn.2095-4239.2017.0111

• 特约文章 • 上一篇    下一篇

同步辐射X-射线和中子衍射在储能材料研究中应用

任  洋1,颉莹莹1, 2,陈宗海1,马紫峰2   

  1. 1Argonne National Laboratory, Argonne, IL 60439, USA;2上海交通大学化学工程系,上海 200240
  • 收稿日期:2017-06-21 修回日期:2017-06-26 出版日期:2017-09-01 发布日期:2017-09-01

Applications of synchrotron X-rays and neutrons diffraction in energy storage materials research

REN Yang1, XIE Yingying1,2, CHEN Zonghai1, MA Zifeng2   

  1. 1Argonne National Laboratory, Argonne, IL 60439, USA; 2Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2017-06-21 Revised:2017-06-26 Online:2017-09-01 Published:2017-09-01
  • Contact: REN Yang (1964—),male,researcher, research interests: synchrotron radiation and neutron scattering techniques and applications, condensed matter physics, phase change and energy storage, E-mail: ren@aps.anl.gov.
  • Supported by:
    Natural Science Foundation of China (21676165), and the U.S. Department of Energy, under Contract (No. DE-AC02-06CH11357973).

摘要: 同步辐射X-射线和中子散射设施是国际上非常流行和不可或缺的科学资源,可为基础研究和应用研究提供强大的工具和实验技术。X-射线和中子以不同又互补的方式与物质相互作用,近年来已经广泛应用于电子、原子和分子水平,乃至工程尺度上对储能材料的研究。本文简要介绍了同步辐射X-射线和中子衍射技术及其差异性、相似性和互补性,对同步辐射高能X-射线的优点也进行了阐述。我们展示了中子散射独特和强大的能力,及其在储氢材料研究中的应用。分别介绍了利用同步辐射X-射线和中子衍射技术原位研究钠离子电池和锂离子电池中Na1–δNi1/3Fe1/3Mn1/3O2和LiNi0.5Mn1.5O4等电极活性物质在合成和电化学脱嵌过程中的结构演变规律的若干案例。最后,展望了同步辐射X-射线和中子衍射技术在储能科学研究中的前景。

关键词: 同步辐射, X-射线, 中子衍射, 储能技术, 电极材料

Abstract: Synchrotron X-ray and neutron diffraction facilities are very popular and indispensable scientific resources that provide powerful instruments and experimental techniques for both fundamental and applied researches around the world. X-rays and neutrons interact with matter in different and also complementary ways, and recently have been extensively used for studying energy storage materials at the electronic, atomic and molecular levels, and even extended to engineering scale. In this article, we will briefly introduce synchrotron X-ray and neutron scattering techniques and their difference, similarity and complementarity. Advantages of synchrotron high-energy X-rays will also be presented. The unique and powerful capacity of neutron scattering for hydrogen storage material study will be shown. We also present some examples of in-situ/operando study of the atomic structure evolution of Na1–δNi1/3Fe1/3Mn1/3O2 and LiNi0.5Mn1.5O4 active electrode materials during synthesis and electrochemical intercalation for sodium ion battery and lithium ion battery. Finally, the future perspectives of synchrotron X-ray and neutron diffraction techniques in the field of materials science for energy storage technology will be discussed.

Key words: synchrotron, X-ray, neutron diffraction, energy storage technology, electrode material