1 |
陈佳慧, 王飞, 危荃, 等. 锂电池安全性能无损检测技术研究进展[J]. 无损检测, 2022, 44(12): 72-75.
|
|
CHEN J H, WANG F, WEI Q, et al. Research progress on nondestructive testing technology of lithium battery safety performance[J]. Nondestructive Testing Technologying, 2022, 44(12): 72-75.
|
2 |
孙浩然, 李雅雯, 韩有军, 等. 基于拓扑滤波与改进Canny算子的锂离子电池电极缺陷检测[J]. 储能科学与技术, 2022, 11(10): 3297-3305. DOI: 10.19799/j.cnki.2095-4239.2022.0167.
|
|
SUN H R, LI Y W, HAN Y J, et al. Lithium-ion battery electrode defect detection based on topological filtering and improved canny operator[J]. Energy Storage Science and Technology, 2022, 11(10): 3297-3305. DOI: 10.19799/j.cnki.2095-4239. 2022.0167.
|
3 |
郭绍陶, 苑玮琦. 基于双高斯纹理滤波模板和极值点韦伯对比度的圆柱锂电池凹坑缺陷检测[J]. 电子学报, 2022, 50(3): 637-642.
|
|
GUO S T, YUAN W Q. Pit defect detection of cylindrical lithium battery based on double Gaussian texture filtering template and extreme point weber contrast[J]. Acta Electronica Sinica, 2022, 50(3): 637-642.
|
4 |
罗东亮, 蔡雨萱, 杨子豪, 等. 工业缺陷检测深度学习方法综述[J]. 中国科学: 信息科学, 2022, 52(6): 1002-1039.
|
|
LUO D L, CAI Y X, YANG Z H, et al. Survey on industrial defect detection with deep learning[J]. Scientia Sinica (Informationis), 2022, 52(6): 1002-1039.
|
5 |
陶志勇, 杜福廷, 任晓奎, 等. 基于T-VGG的太阳电池片缺陷检测[J]. 太阳能学报, 2022, 43(7): 145-151. DOI: 10.19912/j.0254-0096.tynxb.2020-1105.
|
|
TAO Z Y, DU F T, REN X K, et al. Defect detection of solar cells based on t-vgg[J]. Acta Energiae Solaris Sinica, 2022, 43(7): 145-151. DOI: 10.19912/j.0254-0096.tynxb.2020-1105.
|
6 |
周颖, 毛立, 张燕, 等. 改进CNN的太阳电池缺陷识别方法研究[J]. 太阳能学报, 2020, 41(12): 69-76. DOI: 10.19912/j.0254-0096. 2020.12.010.
|
|
ZHOU Y, MAO L, ZHANG Y, et al. Research on defect detection and classification for solar cells based on improved convolutional neural network[J]. Acta Energiae Solaris Sinica, 2020, 41(12): 69-76. DOI: 10.19912/j.0254-0096.2020.12.010.
|
7 |
GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision (ICCV). December 7-13, 2015, Santiago, Chile. IEEE, 2015: 1440-1448. DOI: 10.1109/ICCV. 2015.169.
|
8 |
CAI Z W, VASCONCELOS N. Cascade R-CNN: Delving into high quality object detection[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018, Salt Lake City, UT, USA. IEEE, 2018: 6154-6162. DOI: 10.1109/CVPR.2018.00644.
|
9 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2016: 21-37. DOI: 10.1007/978-3-319-46448-0_2.
|
10 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 17-24, 2023, Vancouver, BC, Canada. IEEE, 2023: 7464-7475. DOI: 10.1109/CVPR52729. 2023.00721.
|
11 |
张曙文, 钟振宇, 朱大虎. 基于改进YOLOx网络的金属齿轮表面缺陷检测方法[J]. 激光与光电子学进展, 2023, 60(22): 280-290. DOI: 10.3788/LOP230469.
|
|
ZHANG S W, ZHONG Z Y, ZHU D H. Gear surface defect detection method based on improved YOLOx network[J]. Laser & Optoelectronics Progress, 2023, 60(22): 280-290. DOI: 10.3788/LOP230469.
|
12 |
张晓晓, 邓承志, 吴朝明, 等. 基于改进YOLOv4的磁瓦缺陷检测算法[J]. 计算机科学, 2023, 50(S2): 389-395. DOI: 10.11896/jsjkx.230100100.
|
|
ZHANG X X, DENG C Z, WU Z M, et al. Magnetic tile defect detection algorithm based on improved YOLOv4[J]. Computer Science, 2023, 50(S2): 389-395. DOI: 10.11896/jsjkx.230100100.
|
13 |
邓光伟, 尤红权, 朱志松. 基于KCC-YOLOv5的铝型材表面缺陷检测[J]. 激光与光电子学进展, 2024, 61(4): 231-239. DOI: 10.3788/LOP230950.
|
|
DENG G W, YOU H Q, ZHU Z S. Defect detection on aluminum profile surface based on KCC-YOLOv5[J]. Laser & Optoelectronics Progress, 2024, 61(4): 231-239. DOI: 10.3788/LOP230950.
|
14 |
CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2020: 213-229. DOI: 10.1007/978-3-030-58452-8_13.
|
15 |
MENG D P, CHEN X K, FAN Z J, et al. Conditional DETR for fast training convergence[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). October 10-17, 2021, Montreal, QC, Canada. IEEE, 2021: 3631-3640. DOI: 10.1109/ICCV48922.2021.00363.
|
16 |
ZHANG H, LI F, LIU S L, et al. DINO: DETR with improved DeNoising anchor boxes for end-to-end object detection[C]//The Eleventh International Conference on Learning Representations(ICLR), 2023.
|
17 |
ZONG Z F, SONG G L, LIU Y. DETRs with collaborative hybrid assignments training[C]//2023 IEEE/CVF International Conference on Computer Vision (ICCV). October 1-6, 2023, Paris, France. IEEE, 2023: 6725-6735. DOI: 10.1109/ICCV51070.2023.00621.
|
18 |
ZHANG H, ZHANG S. Shape-IoU: More accurate metric considering bounding box shape and scale [EB/OL]. (2023-12-29)[2024-04-16]. https://arxiv.org/abs/2312.17663.
|
19 |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017: 936-944. DOI: 10.1109/CVPR.2017.106.
|
20 |
LI J F, WEN Y, HE L H. SCConv: Spatial and channel reconstruction convolution for feature redundancy[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 17-24, 2023, Vancouver, BC, Canada. IEEE, 2023: 6153-6162. DOI: 10.1109/CVPR52729.2023.00596.
|
21 |
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2018: 3-19. DOI: 10.1007/978-3-030-01234-2_1.
|
22 |
ZHOU X, WANG D, KRÄHENBÜHL P. Objects as points [EB/OL]. (2019-04-16)[2024-04-16]. https://arxiv.org/abs/1904.07850.
|