储能科学与技术 ›› 2025, Vol. 14 ›› Issue (1): 370-379.doi: 10.19799/j.cnki.2095-4239.2024.0591

• 储能测试与评价 • 上一篇    下一篇

BDD-DETR:高效感知小目标的锂电池表面缺陷检测

邢远秀(), 刘颛玮, 邢玉峰, 王文波   

  1. 武汉科技大学理学院,湖北 武汉 430081
  • 收稿日期:2024-07-01 修回日期:2024-07-28 出版日期:2025-01-28 发布日期:2025-02-25
  • 通讯作者: 邢远秀 E-mail:yuanxiu@126.com
  • 作者简介:邢远秀(1980—),女,博士,副教授,从事机器学习、图像处理方面的研究,E-mail:yuanxiu@126.com
  • 基金资助:
    企业委托科技项目(2023H20132)

BDD-DETR: An efficient algorithm for detecting small surface defects on lithium batteries

Yuanxiu XING(), Zhuanwei LIU, Yufeng XING, Wenbo WANG   

  1. College of Science, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
  • Received:2024-07-01 Revised:2024-07-28 Online:2025-01-28 Published:2025-02-25
  • Contact: Yuanxiu XING E-mail:yuanxiu@126.com

摘要:

针对锂电池外壳端面缺陷尺度和形状差异大而导致小目标缺陷识别困难等问题,提出BDD-DETR (battery defects detection-detection transformer)的锂电池表面缺陷检测算法。BDD-DETR架构在通用的特征提取模块和检测头模块间融入全新的模块特征感知与融合网络,通过自适应特征感知模块和特征融合路径从多个方向融合网络的深层与浅层特征,增强关键特征信息响应并抑制冗余特征,进一步提升模型多尺度特征融合能力和小目标感知能力;此外,为了减小缺陷边界框回归时的距离偏差和形状偏差,采用Shape IoU(shape intersection over union)损失函数训练网络模型。实验结果表明,在构建的锂电池端面缺陷数据集上,与Co-DETR(collaborative-detection transformer)比较,BDD-DETR平均精度提升了3.7%,小尺度目标检测精度提升了8.9%,平均召回率提升了1.1%,在锂电池的小目标缺陷检测性能上优于目前一些先进的目标检测方法。

关键词: 锂离子电池, 缺陷检测, Co-DETR, 特征感知与融合网络, Shape IoU损失

Abstract:

To address the challenges posed by the large scale and shape differences of defects on the end face of lithium battery casings, which complicate the detection of small target defects, we introduce a novel lithium battery surface defect detection algorithm based on battery defects detection-detection transformer (BDD-DETR). The BDD-DETR framework introduces a new feature perception and fusion network (FPFN) module between the general feature extraction and detection head modules. Through the adaptive feature perception module and the feature fusion path in FPFN, the deep and shallow features of this network from multiple directions are merged, the response of crucial feature information is enhanced, and redundant features are suppressed, which further improves the ability of the model to fuse multi-scale features and its capability to detect small objects. In addition, to minimize distance and shape deviations during defect bounding box regression, the shape intersection over union loss function is employed to train the network model. Experimental results indicate that on a constructed lithium battery end surface defect dataset, compared to the collaborative-detection transformer, BDD-DETR improves average precision by 3.7%, small-scale object detection precision by 8.9%, and average recall rate by 1.1%. Furthermore, BDD-DETR outperforms several advanced object detection approaches in detecting small defects in lithium batteries.

Key words: lithium-ion battery, defect detection, Co-DETR, feature perception and fusion network, Shape IoU loss

中图分类号: