1 |
曹雅丽. 全国人大代表张天任: 大力推动动力电池循环产业高质量发展[N]. 中国工业报, 2024-03-08(007).
|
|
CAO Y L. National People's Congress Zhang Tianren: vigorously promote the high-quality development of power battery recycling industry[N]. China Industry News, 2024-03-08(007).
|
2 |
李晋, 王青松, 孔得朋, 等. 锂离子电池储能安全评价研究进展[J]. 储能科学与技术, 2023, 12(7): 2282-2301. DOI: 10.19799/j.cnki. 2095-4239.2023.0252.
|
|
LI J, WANG Q S, KONG D P, et al. Research progress on the safety assessment of lithium-ion battery energy storage[J]. Energy Storage Science and Technology, 2023, 12(7): 2282-2301. DOI: 10.19799/j.cnki.2095-4239.2023.0252.
|
3 |
LIU P J, LI Y Q, MAO B B, et al. Experimental study on thermal runaway and fire behaviors of large format lithium iron phosphate battery[J]. Applied Thermal Engineering, 2021, 192: 116949. DOI: 10.1016/j.applthermaleng.2021.116949.
|
4 |
张孝远, 张金浩, 杨立新. 考虑不同充电策略的锂电池健康状态区间估计[J]. 上海交通大学学报, 2024, 58(3): 273-284.
|
|
ZHANG X Y, ZHANG J H, YANG L X. Interval estimation of state of health for lithium batteries considering different charging strategies[J]. Journal of Shanghai Jiao Tong University, 2024, 58(3): 273-284.
|
5 |
韦海燕, 陈孝杰, 吕治强, 等. 灰色神经网络模型在线估算锂离子电池SOH[J]. 电网技术, 2017, 41(12): 4038-4044. DOI: 10.13335/j. 1000-3673.pst.2017.0522.
|
|
WEI H Y, CHEN X J, LÜ Z Q, et al. Online estimation of lithium-ion battery state of health using grey neural network[J]. Power System Technology, 2017, 41(12): 4038-4044. DOI: 10.13335/j. 1000-3673.pst.2017.0522.
|
6 |
SHEN S, SADOUGHI M, LI M, et al. Deep convolutional neural networks with ensemble learning and transfer learning for capacity estimation of lithium-ion batteries[J]. Applied Energy, 2020, 260: 114296. DOI: 10.1016/j.apenergy.2019.114296.
|
7 |
申江卫, 马文赛, 肖仁鑫, 等. 基于优化高斯过程回归算法的锂离子电池可用容量估算[J]. 中国公路学报, 2022, 35(8): 31-43. DOI: 10.19721/j.cnki.1001-7372.2022.08.004.
|
|
SHEN J W, MA W S, XIAO R X, et al. Available capacity estimation of lithium-ion batteries based on optimized Gaussian process regression[J]. China Journal of Highway and Transport, 2022, 35(8): 31-43. DOI: 10.19721/j.cnki.1001-7372.2022.08.004.
|
8 |
OSPINA AGUDELO B, ZAMBONI W, MONMASSON E. Application domain extension of incremental capacity-based battery SoH indicators[J]. Energy, 2021, 234: 121224. DOI: 10. 1016/j.energy. 2021.121224.
|
9 |
KHUMPROM P, YODO N. A data-driven predictive prognostic model for lithium-ion batteries based on a deep learning algorithm[J]. Energies, 2019, 12(4): 660. DOI: 10.3390/en12040660.
|
10 |
石伟杰, 王海民. 基于锂离子电池热特性的SOH在线诊断模型研究[J]. 仪器仪表学报, 2020, 41(8): 206-216. DOI: 10.19650/j.cnki.cjsi.J2006393.
|
|
SHI W J, WANG H M. On-line diagnosis model of SOH based on thermal characteristics of lithium-ion battery[J]. Chinese Journal of Scientific Instrument, 2020, 41(8): 206-216. DOI: 10.19650/j.cnki.cjsi.J2006393.
|
11 |
赵靖英, 黄麟然, 姚帅亮. 考虑容量再生的锂电池健康状态估计方法[J/OL]. 电源学报: 1-14[2023-12-27].http://kns.cnki.net/kcms/detail/12.1420.TM.20231218.1739.004.html.
|
|
ZHAO J Y, HUANG L R, YAO S L. State-of-health estimation of lithium-ion battery consider capacity regeneration[J/OL]. Journal of Power Supply: 1-14[2023-12-27].http://kns.cnki.net/kcms/detail/12.1420.TM.20231218.1739.004.html.
|
12 |
YANG D, ZHANG X, PAN R, et al. A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve[J]. Journal of Power Sources, 2018, 384: 387-395. DOI: 10.1016/j.jpowsour.2018.03.015.
|
13 |
王萍, 范凌峰, 程泽. 基于健康特征参数的锂离子电池SOH和RUL联合估计方法[J]. 中国电机工程学报, 2022, 42(4): 1523-1534. DOI: 10.13334/j.0258-8013.pcsee.202368.
|
|
WANG P, FAN L F, CHENG Z. A joint state of health and remaining useful life estimation approach for lithium-ion batteries based on health factor parameter[J]. Proceedings of the CSEE, 2022, 42(4): 1523-1534. DOI: 10.13334/j.0258-8013.pcsee. 202368.
|
14 |
何中政, 方丽, 刘万, 等. 基于指数核函数高斯过程回归的短期径流预测研究[J]. 中国农村水利水电, 2023(8): 25-31, 40. DOI: 10. 12396/znsd.230394.
|
|
HE Z Z, FANG L, LIU W, et al. Short-term runoff prediction based on exponential Kernel Gaussian process regression[J]. China Rural Water and Hydropower, 2023(8): 25-31, 40. DOI: 10.12396/znsd.230394.
|
15 |
朱浩然, 陈自强, 杨德庆. 基于差分热伏安法和高斯过程回归的锂电池健康状态估计[J]. 上海交通大学学报, 2024, 58(12):1925-1934. DOI:10.16183/j.cnki.jsjtu.2023.141.
|
|
ZHU H R, CHEN Z Q, YANG D Q. State of health estimation for Li-ion batteries based on differential thermal voltammetry and gaussian process regression[J]. Journal of Shanghai Jiao Tong University, 2024, 58(12):1925-1934. DOI:10.16183/j.cnki.jsjtu. 2023.141.
|
16 |
汪鑫, 陈少鑫, 林心岚, 等. 协方差函数组合对Ti6Al4V材料加工切削力预测模型的影响[J]. 装备维修技术, 2023(1): 32-37. DOI: 10. 16648/j.cnki.1005-2917.2023.1.033.
|
|
WANG X, CHEN S X, LIN X L, et al. Effect of covariance function combination on cutting force prediction model of Ti6Al4V material[J]. Equipment Technology, 2023(1): 32-37. DOI: 10.16648/j.cnki. 1005-2917.2023.1.033.
|
17 |
王琛, 闵永军. 基于容量增量曲线与GWO-GPR的锂离子电池SOH估计[J]. 储能科学与技术, 2023, 12(11): 3508-3518. DOI: 10. 19799/j.cnki.2095-4239.2023.0458.
|
|
WANG C, MIN Y J. SOH estimation of lithium-ion batteries based on capacity increment curve and GWO-GPR[J]. Energy Storage Science and Technology, 2023, 12(11): 3508-3518. DOI: 10. 19799/j.cnki.2095-4239.2023.0458.
|
18 |
HE W, WILLIARD N, OSTERMAN M, et al. Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method[J]. Journal of Power Sources, 2011, 196(23): 10314-10321. DOI: 10.1016/j.jpowsour. 2011.08.040.
|
19 |
王萍, 弓清瑞, 张吉昂, 等. 一种基于数据驱动与经验模型组合的锂电池在线健康状态预测方法[J]. 电工技术学报, 2021, 36(24): 5201-5212. DOI: 10.19595/j.cnki.1000-6753.tces.210385.
|
|
WANG P, GONG Q R, ZHANG J A, et al. An online state of health prediction method for lithium batteries based on combination of data-driven and empirical model[J]. Transactions of China Electrotechnical Society, 2021, 36(24): 5201-5212. DOI: 10. 19595/j.cnki.1000-6753.tces.210385.
|
20 |
CHU W, GHAHRAMANI Z. Gaussian processes for ordinal regression[J]. Journal of Machine Learning Research, 2005, 61019-1041.
|
21 |
夏然, 苏春. 基于健康因子和混合Bi-LSTM-NAR模型的锂离子电池剩余寿命预测[J]. 中国机械工程, 2024, 35(5): 851-859.
|
|
XIA R, SU C. Remaining useful life prediction for lithium-ion batteries based on health indicators and hybrid Bi-LSTM-NAR model[J]. China Mechanical Engineering, 2024, 35(5): 851-859.
|
22 |
JIN H Y, CUI N M, CAI L, et al. State-of-health estimation for lithium-ion batteries with hierarchical feature construction and auto-configurable Gaussian process regression[J]. Energy, 2023, 262: 125503. DOI: 10.1016/j.energy.2022.125503.
|
23 |
孙琤, 刘东好. 基于组合核函数相关向量机的高光谱图像分类[J]. 计算机科学与应用, 2023, 13(7): 1399-1408.
|
|
SUN C, LIU D H. Hyperspectral image classification based on composite kernel relevance vector machine[J]. Computer Science and Application, 2023, 13(7): 1399-1408.
|
24 |
张钧博, 何川, 严健, 等. 基于交叉验证的XGBoost算法在岩爆烈度分级预测中的适用性探讨[J]. 隧道建设(中英文), 2020, 40(S1):247-253. DOI:10.3973/j.issn.2096-4498.2020.S1.031.
|
|
ZHANG J B, HE C, YAN J, et al. Discussion on the applicability of XGBoost algorithm based on cross validation in prediction of rockburst intensity classification[J]. Tunnel Construction, 2020, 40(S1):247-253. DOI:10.3973/j.issn.2096-4498.2020.S1.031.
|
25 |
周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.
|
26 |
BIRKL C R, Diagnosis and prognosis of degradation in lithium-ion batteries[D]. Oxford: University of Oxford, 2017.
|
27 |
SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4(5): 383-391. DOI: 10.1038/s41560-019-0356-8.
|
28 |
HE Y, BAI W Y, WANG L L, et al. SOH estimation for lithium-ion batteries: An improved GPR optimization method based on the developed feature extraction[J]. Journal of Energy Storage, 2024, 83: 110678. DOI:10.1016/j.est.2024.110678.
|
29 |
李练兵, 朱乐, 景睿雄等. 基于DESSA-DESN和NCA的锂电池剩余寿命预测[J]. 储能科学与技术, 2023, 12(10): 3191-3202.
|
|
LI L B, ZHU L, JING R X, et al. Remaining useful life prediction of lithium-ion batteries based on the DESSA-DESN model and the NCA algorithm[J]. Energy Storage Science and Technology, 2023, 12(10): 3191-3202.
|