1 |
LIU Z Z, HAN M M, ZHANG S B, et al. Hybrid surface modification and bulk doping enable spent LiCoO2 cathodes for high-voltage operation[J]. Advanced Materials, 2024, 36(32): 2404188. DOI: 10.1002/adma.202404188.
|
2 |
胡大林, 任潘利, 张昌明, 等. Al-Y-Zr原位共掺杂提高4.53V钴酸锂正极材料的循环性能[J]. 储能科学与技术, 2024, 13(3): 742-748. DOI: 10.19799/j.cnki.2095-4239.2023.0741.
|
|
HU D L, REN P L, ZHANG C M, et al. Improving the cycling performance of LiCoO2 at 4.53 V via in situ co-doping of Al-Y-Zr[J]. Energy Storage Science and Technology, 2024, 13(3): 742-748. DOI: 10.19799/j.cnki.2095-4239.2023.0741.
|
3 |
LYU Y C, WU X, WANG K, et al. An overview on the advances of LiCoO2 cathodes for lithium-ion batteries[J]. Advanced Energy Materials, 2021, 11(2): 2000982. DOI: 10.1002/aenm.202000982.
|
4 |
KONAR R, MAITI S, SHPIGEL N, et al. Reviewing failure mechanisms and modification strategies in stabilizing high-voltage LiCoO2 cathodes beyond 4.55V[J]. Energy Storage Materials, 2023, 63: 103001. DOI: 10.1016/j.ensm.2023.103001.
|
5 |
LI Z J, YI H C, DING W Y, et al. Revealing the accelerated capacity decay of a high-voltage LiCoO2 upon harsh charging procedure[J]. Advanced Functional Materials, 2024, 34(14): 2312837. DOI: 10.1002/adfm.202312837.
|
6 |
JU L, ZHU Z, HUANG Y, et al. Gradient-morph LiCoO2 single crystals with stabilized energy-density above 3400 Wh/L in full-cells: U.S. Patent Application 17/996,069[P]. 2023-6-15. https://patents.google.com/patent/US20230187617A1/en.
|
7 |
ZHU Z, WANG H, LI Y, et al. A surface Se-substituted LiCo [O2- δSeδ] cathode with ultrastable high-voltage cycling in pouch full-cells[J]. Advanced Materials, 2020, 32(50): 2005182. DOI: 10.1002/adma.202005182.
|
8 |
徐冲, 徐宁, 蒋志敏, 等. 锂离子电池产气机制及基于电解液的抑制策略[J]. 储能科学与技术, 2023, 12(7): 2119-2133. DOI: 10.19799/j.cnki.2095-4239.2023.0212.
|
|
XU C, XU N, JIANG Z M, et al. Mechanisms of gas evolution and suppressing strategies based on the electrolyte in lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(7): 2119-2133. DOI: 10.19799/j.cnki.2095-4239.2023.0212.
|
9 |
SUN Z Y, LI F K, DING J Y, et al. High-voltage and high-temperature LiCoO2 operation via the electrolyte additive of electron-defect boron compounds[J]. ACS Energy Letters, 2023, 8(6): 2478-2487. DOI: 10.1021/acsenergylett.3c00324.
|
10 |
刘承鑫, 李梓衡, 陈泽宇, 等. 储能锂离子电池高温诱发热失控特性研究[J]. 储能科学与技术, 2024, 13(7): 2425-2431. DOI: 10.19799/j.cnki.2095-4239.2024.0121.
|
|
LIU C X, LI Z H, CHEN Z Y, et al. Characterization study on overheat-induced thermal runaway for lithium-ion battery in energy storage[J]. Energy Storage Science and Technology, 2024, 13(7): 2425-2431. DOI: 10.19799/j.cnki.2095-4239. 2024.0121.
|
11 |
WANG Y, ZHANG Q H, XUE Z C, et al. An in situ formed surface coating layer enabling LiCoO2 with stable 4.6 V high-voltage cycle performances[J]. Advanced Energy Materials, 2020, 10(28): 2001413. DOI: 10.1002/aenm.202001413.
|
12 |
JENA A, LEE P H, PANG W K, et al. Monitoring the phase evolution in LiCoO2 electrodes during battery cycles using in situ neutron diffraction technique[J]. Journal of the Chinese Chemical Society, 2020, 67(3): 344-352. DOI: 10.1002/jccs.201900448.
|
13 |
武怿达, 张义, 詹元杰, 等. 氧化硼修饰的钴酸锂材料及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1687-1692. DOI: 10.19799/j.cnki.2095-4239.2021.0685.
|
|
WU Y D, ZHANG Y, ZHAN Y J, et al. The effect of B2O3 modification on the electrochemical properties of LiCoO2 cathode[J]. Energy Storage Science and Technology, 2022, 11(6): 1687-1692. DOI: 10.19799/j.cnki.2095-4239.2021.0685.
|
14 |
REN J C, TANG Y, LI W B, et al. Enabling high-performance 4.6 V LiCoO2 in a wide temperature range via a synergetic strategy[J]. EcoMat, 2023, 5(6): e12344. DOI: 10.1002/eom2.12344.
|
15 |
ZHANG W, ZHANG X Y, CHENG F Y, et al. Enabling stable 4.6 V LiCoO2 cathode through oxygen charge regulation strategy[J]. Journal of Energy Chemistry, 2023, 76: 557-565. DOI: 10.1016/j.jechem.2022.09.034.
|
16 |
QIU J W, GUO J, LI J H, et al. Insight into the contribution of the electrolyte additive LiBF4 in high-voltage LiCoO2||SiO/C pouch cells[J]. ACS Applied Materials & Interfaces, 2023. DOI: 10.1021/acsami.3c10903.
|
17 |
YANG H Y, ZHAO Y J, QIN T, et al. Chemically active sulfonate additive with transition metal and oxygen dual-site deactivation for high-voltage LiCoO2[J]. ACS Energy Letters, 2024, 9(9): 4475-4484. DOI: 10.1021/acsenergylett.4c01898.
|
18 |
WU Q, ZHANG B, LU Y Y. Progress and perspective of high-voltage lithium cobalt oxide in lithium-ion batteries[J]. Journal of Energy Chemistry, 2022, 74: 283-308. DOI: 10.1016/j.jechem. 2022.07.007.
|
19 |
ZHANG Z F, QIN C D, WANG K, et al. Deciphering the critical effect of cathode-electrolyte interphase by revealing its dynamic evolution[J]. Journal of Energy Chemistry, 2023, 81: 192-199. DOI: 10.1016/j.jechem.2023.01.046.
|
20 |
KIM G Y, DAHN J R. The effect of some nitriles as electrolyte additives in Li-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(3): A437-A447. DOI: 10.1149/2.0651503jes.
|
21 |
TONG B, SONG Z Y, WAN H H, et al. Sulfur-containing compounds as electrolyte additives for lithium-ion batteries[J]. InfoMat, 2021, 3(12): 1364-1392. DOI: 10.1002/inf2.12235.
|
22 |
WANG H L, CHEN S X, LI Y, et al. Organosilicon-based functional electrolytes for high-performance lithium batteries[J]. Advanced Energy Materials, 2021, 11(28): 2101057. DOI: 10. 1002/aenm.202101057.
|
23 |
LIU X, FU A, LIN J D, et al. Constructing a stabilized cathode electrolyte interphase for high-voltage LiCoO2 batteries via the phenylmaleic anhydride additive[J]. ACS Applied Energy Materials, 2023, 6(3): 2001-2009. DOI: 10.1021/acsaem.2c03934.
|
24 |
RONG H B, XU M Q, ZHU Y M, et al. A novel imidazole-based electrolyte additive for improved electrochemical performance of high voltage nickel-rich cathode coupled with graphite anode lithium ion battery[J]. Journal of Power Sources, 2016, 332: 312-321. DOI: 10.1016/j.jpowsour.2016.09.016.
|
25 |
XIE Z K, WU Z J, AN X W, et al. 2-Fluoropyridine: A novel electrolyte additive for lithium metal batteries with high areal capacity as well as high cycling stability[J]. Chemical Engineering Journal, 2020, 393: 124789. DOI: 10.1016/j.cej.2020.124789.
|
26 |
ZHANG Z, LIU F Y, HUANG Z Y, et al. Enhancing the electrochemical performance of a high-voltage LiCoO2 cathode with a bifunctional electrolyte additive[J]. ACS Applied Energy Materials, 2021, 4(11): 12954-12964. DOI: 10.1021/acsaem.1c02593.
|
27 |
WANG W L, HU H L, ZENG X Y, et al. Bifunctional mechanism and electrochemical performance of self-healing nitrile ether electrolyte additives in 4.5 V LiCoO2/artificial graphite lithium-ion batteries[J]. Journal of Power Sources, 2022, 542: 231799. DOI: 10.1016/j.jpowsour.2022.231799.
|
28 |
LI W T, CAMPION C, LUCHT B L, et al. Additives for stabilizing LiPF6-based electrolytes against thermal decomposition[J]. Journal of the Electrochemical Society, 2005, 152(7): A1361. DOI: 10.1149/1.1926651.
|