储能科学与技术 ›› 2025, Vol. 14 ›› Issue (4): 1340-1351.doi: 10.19799/j.cnki.2095-4239.2024.0916

• 储能材料与器件 • 上一篇    下一篇

硅氧烷溶剂应用于高电压锂金属电池及电化学性能

黄德权(), 韦韬, 殷广达, 闻港, 侯爵, 梁毅()   

  1. 桂林航天工业学院,广西 桂林 541004
  • 收稿日期:2024-09-27 修回日期:2024-10-22 出版日期:2025-04-28 发布日期:2025-05-20
  • 通讯作者: 梁毅 E-mail:hdq2535@163.com;liangyi@guat.edu.cn
  • 作者简介:黄德权(1992—),男,博士,讲师,主要从事新能源电极材料、锂金属负极界面调控、高电压锂金属电池/钠离子电池电解液开发,E-mail:hdq2535@163.com
  • 基金资助:
    广西高校中青年教师科研基础能力提升项目(2024KY0808)

Research on the application of siloxane solvent in high-voltage lithium metal batteries and electrochemical performance

Dequan HUANG(), Tao WEI, Guangda YIN, Gang WEN, Jue HOU, Yi LIANG()   

  1. Guilin University of Aerospace Technology, Guilin 541004, Guangxi, China
  • Received:2024-09-27 Revised:2024-10-22 Online:2025-04-28 Published:2025-05-20
  • Contact: Yi LIANG E-mail:hdq2535@163.com;liangyi@guat.edu.cn

摘要:

锂金属具有高理论比容量(3860 mAh/g),与高电压正极匹配构筑的锂金属电池可显著提升电池能量密度。但锂枝晶生长、不稳定的(SEI solid electrolyte interphase)膜及在DME(乙二醇二甲醚)醚类电解液中与高电压正极不兼容限制了高电压锂金属电池的应用。本工作通过引入硅氧烷基电解液取代DME醚类电解液,利用硅氧烷的高化学键能提升电解液的氧化稳定性使之兼容高电压正极材料。同时在硅氧烷基电解液中,Li+和FSI-阴离子之间呈现出较强的配位能力,有利于FSI-阴离子优先在锂金属表面上还原生成富含LiF的SEI膜,有效抑制锂枝晶的生长并提高Li+传输动力学。相比于DME电解液,电池在DMS-1(二甲基二甲氧基硅烷)硅氧烷电解液中呈现出更好的电化学性能。Li||Cu电池在1.0 mA/cm2的电流密度下可以稳定循环300圈。Li||LFP和Li||NCM811全电池在DMS-1电解液中也呈现出优异的电化学性能。Li||LFP电池在2.0 C下循环400次后,其放电比容量没有出现明显的容量衰减。Li||NCM811电池在1.0 C下循环300次后,其放电比容量保持率为83.0%,显示出优异的循环稳定性。本工作开发的硅氧烷基电解液,为构建长循环、高电压锂金属电池提供了一种有前景的策略。

关键词: 锂金属电池, 电解液, 高电压, 电化学性能

Abstract:

Lithium metal anodes offer a high theoretical specific capacity (3860 mAh/g) and, when combined with high-voltage cathodes, can significantly boost the energy density of lithium metal batteries (LMBs). However, their practical application is challenged by issues such as lithium dendrite growth, unstable solid-electrolyte interphase (SEI), and poor compatibility with high-voltage cathodes in DME ether-based electrolytes. To address these challenges, this work introduces a siloxane electrolyte as a substitute for DME ether-based electrolytes. The high chemical bond energy of siloxane enhances the oxidation stability of the electrolyte, making it compatible with high-voltage cathodes. Furthermore, the strong interaction between Li+ ions and FSI- anions in the siloxane electrolyte promotes the preferential reduction of FSI- anions on the lithium anode surface. This process forms a LiF-rich SEI film, effectively inhibiting dendrite growth and improving Li+ transport kinetics. Compared to DME ether-based electrolytes, cells utilizing the DMS-1 siloxane electrolyte exhibit superior electrochemical performance. The Li||Cu cycle can be stable for 300 cycles at a current density of 1.0 mA/cm2. Full cells with Li||LFP and Li||NCM811 cathodes also show excellent electrochemical performance in the DMS-1 electrolyte. The Li||LFP cell maintains its capacity without significant fading after 400 cycles at 2.0 C. The Li||NCM811 cell achieves 83% capacity retention after 300 cycles at 1.0 C, showing excellent cycle stability. The siloxane electrolyte developed in this work provides a promising strategy for constructing long-cycle, high-voltage LMBs.

Key words: lithium metal battery, electrolyte, high-voltage, electrochemical performance

中图分类号: