1 |
WEN J P, ZHAO D, ZHANG C W. An overview of electricity powered vehicles: Lithium-ion battery energy storage density and energy conversion efficiency[J]. Renewable Energy, 2020, 162: 1629-1648. DOI: 10.1016/j.renene.2020.09.055.
|
2 |
WU F X, MAIER J, YU Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J]. Chemical Society Reviews, 2020, 49(5): 1569-1614. DOI: 10. 1039/c7cs00863e.
|
3 |
XU J J, CAI X Y, CAI S M, et al. High-energy lithium-ion batteries: Recent progress and a promising future in applications[J]. Energy & Environmental Materials, 2023, 6(5): e12450. DOI: 10.1002/eem2.12450.
|
4 |
DING J F, ZHANG Y T, XU R, et al. Review on lithium metal anodes towards high energy density batteries[J]. Green Energy & Environment, 2023, 8(6): 1509-1530. DOI: 10.1016/j.gee. 2022.08.002.
|
5 |
HUANG Y F, YANG H T, GAO Y, et al. Mechanism and solutions of lithium dendrite growth in lithium metal batteries[J]. Materials Chemistry Frontiers, 2024, 8(5): 1282-1299. DOI: 10.1039/D3QM01151H.
|
6 |
BECHERER J, KRAMER D, MÖNIG R. The growth mechanism of lithium dendrites and its coupling to mechanical stress[J]. Journal of Materials Chemistry A, 2022, 10(10): 5530-5539. DOI: 10.1039/D1TA10920K.
|
7 |
NIU C J, LIU D Y, LOCHALA J A, et al. Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries[J]. Nature Energy, 2021, 6(7): 723-732. DOI: 10.1038/s41560-021-00852-3.
|
8 |
HAO Z D, ZHAO Q, TANG J D, et al. Functional separators towards the suppression of lithium dendrites for rechargeable high-energy batteries[J]. Materials Horizons, 2021, 8(1): 12-32. DOI: 10.1039/d0mh01167c.
|
9 |
KO S, OBUKATA T, SHIMADA T, et al. Electrode potential influences the reversibility of lithium-metal anodes[J]. Nature Energy, 2022, 7(12): 1217-1224. DOI: 10.1038/s41560-022-01144-0.
|
10 |
ZHANG J G, XU W, XIAO J, et al. Lithium metal anodes with nonaqueous electrolytes[J]. Chemical Reviews, 2020, 120(24): 13312-13348. DOI: 10.1021/acs.chemrev.0c00275.
|
11 |
YANG H C, LI J, SUN Z H, et al. Reliable liquid electrolytes for lithium metal batteries[J]. Energy Storage Materials, 2020, 30: 113-129. DOI: 10.1016/j.ensm.2020.04.010.
|
12 |
YU Z A, WANG H S, KONG X, et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries[J]. Nature Energy, 2020, 5(7): 526-533. DOI: 10.1038/s41560-020-0634-5.
|
13 |
WU H P, JIA H, WANG C M, et al. Recent progress in understanding solid electrolyte interphase on lithium metal anodes[J]. Advanced Energy Materials, 2021, 11(5): 2003092. DOI: 10.1002/aenm.202003092.
|
14 |
LIN L, ZHENG H F, LUO Q, et al. Regulating lithium nucleation at the electrolyte/electrode interface in lithium metal batteries[J]. Advanced Functional Materials, 2024, 34(24): 2315201. DOI: 10.1002/adfm.202315201.
|
15 |
GUNNARSDÓTTIR A B, AMANCHUKWU C V, MENKIN S, et al. Noninvasive in situ NMR study of "dead lithium" formation and lithium corrosion in full-cell lithium metal batteries[J]. Journal of the American Chemical Society, 2020, 142(49): 20814-20827. DOI: 10.1021/jacs.0c10258.
|
16 |
LIU S J, JIAO K J, YAN J H. Prospective strategies for extending long-term cycling performance of anode-free lithium metal batteries[J]. Energy Storage Materials, 2023, 54: 689-712. DOI: 10.1016/j.ensm.2022.11.021.
|
17 |
LI Z, RAO H, ATWI R, et al. Non-polar ether-based electrolyte solutions for stable high-voltage non-aqueous lithium metal batteries[J]. Nature Communications, 2023, 14(1): 868. DOI: 10.1038/s41467-023-36647-1.
|
18 |
REN X D, ZOU L F, JIAO S H, et al. High-concentration ether electrolytes for stable high-voltage lithium metal batteries[J]. ACS Energy Letters, 2019, 4(4): 896-902. DOI: 10.1021/acsenergylett. 9b00381.
|
19 |
LIU S F, JI X, PIAO N, et al. An inorganic-rich solid electrolyte interphase for advanced lithium-metal batteries in carbonate electrolytes[J]. Angewandte Chemie International Edition, 2021, 60(7): 3661-3671. DOI: 10.1002/anie.202012005.
|
20 |
WEN Z X, FANG W Q, WU X Y, et al. High-concentration additive and triiodide/iodide redox couple stabilize lithium metal anode and rejuvenate the inactive lithium in carbonate-based electrolyte[J]. Advanced Functional Materials, 2022, 32(35): 2204768. DOI: 10.1002/adfm.202204768.
|
21 |
KIM K, MA H, PARK S, et al. Electrolyte-additive-driven interfacial engineering for high-capacity electrodes in lithium-ion batteries: Promise and challenges[J]. ACS Energy Letters, 2020, 5(5): 1537-1553. DOI: 10.1021/acsenergylett.0c00468.
|
22 |
LI Y M, GUO Q, WU Y, et al. Artificial graphite paper as a corrosion-resistant current collector for long-life lithium metal batteries[J]. Advanced Functional Materials, 2023, 33(19): 2214523. DOI: 10.1002/adfm.202214523.
|
23 |
ZHAO Y, ZHOU T H, ASHIROV T, et al. Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries[J]. Nature Communications, 2022, 13(1): 2575. DOI: 10.1038/s41467-022-29199-3.
|
24 |
WANG Y K, LI Z M, HOU Y P, et al. Emerging electrolytes with fluorinated solvents for rechargeable lithium-based batteries[J]. Chemical Society Reviews, 2023, 52(8): 2713-2763. DOI: 10.1039/D2CS00873D.
|
25 |
ZHAO Y, ZHOU T H, MENSI M, et al. Electrolyte engineering via ether solvent fluorination for developing stable non-aqueous lithium metal batteries[J]. Nature Communications, 2023, 14(1): 299. DOI: 10.1038/s41467-023-35934-1.
|
26 |
WANG Y, YANG X, MENG Y F, et al. Fluorine chemistry in rechargeable batteries: Challenges, progress, and perspectives[J]. Chemical Reviews, 2024, 124(6): 3494-3589. DOI: 10.1021/acs.chemrev.3c00826.
|
27 |
GUO L Y, HUANG F F, CAI M Z, et al. Organic-inorganic hybrid SEI induced by a new lithium salt for high-performance metallic lithium anodes[J]. ACS Applied Materials & Interfaces, 2021, 13(28): 32886-32893. DOI: 10.1021/acsami.1c04788.
|
28 |
AURBACH D, MARKEVICH E, SALITRA G. High energy density rechargeable batteries based on Li metal anodes. The role of unique surface chemistry developed in solutions containing fluorinated organic co-solvents[J]. Journal of the American Chemical Society, 2021, 143(50): 21161-21176. DOI: 10.1021/jacs.1c11315.
|
29 |
ZHAI P B, LIU L X, GU X K, et al. Interface engineering for lithium metal anodes in liquid electrolyte[J]. Advanced Energy Materials, 2020, 10(34): 2001257. DOI: 10.1002/aenm.202001257.
|
30 |
GUO Z Y, YANG M, FAN Q, et al. Inorganic-enriched solid electrolyte interphases: A key to enhance sodium-ion battery cycle stability?[J]. Small, 2024, 20(51): 2407425. DOI: 10.1002/smll.202407425.
|