储能科学与技术 ›› 2025, Vol. 14 ›› Issue (3): 997-1009.doi: 10.19799/j.cnki.2095-4239.2024.1123
李南1(), 马静1, 黄挺秀1, 沈毅星2, 沈旻1, 江依义1, 洪涛1(
), 马国强1, 马紫峰2
收稿日期:
2024-11-27
修回日期:
2024-12-25
出版日期:
2025-03-28
发布日期:
2025-04-28
通讯作者:
洪涛
E-mail:linan430316@163.com;hongtao_xg@sinochem.com
作者简介:
李南(1991—),女,硕士,工程师,研究方向为锂/钠离子电池电解液,E-mail:linan430316@163.com;
基金资助:
Nan LI1(), Jing MA1, Tingxiu HUANG1, Yixing SHEN2, Min SHEN1, Yiyi JIANG1, Tao HONG1(
), Guoqiang MA1, Zifeng MA2
Received:
2024-11-27
Revised:
2024-12-25
Online:
2025-03-28
Published:
2025-04-28
Contact:
Tao HONG
E-mail:linan430316@163.com;hongtao_xg@sinochem.com
摘要:
提高工作电压是提升锂离子电池能量密度的有效途径,但由此引发的电解液氧化分解、过渡金属离子溶出以及正极材料结构破坏等问题,严重制约了其实际应用。因此,开发具有优异电化学稳定性的电解液成为研究的热点。腈类化合物由于高介电常数和优良的氧化稳定性,被视为高电压体系中优化电解液的理想选择。本文回顾了腈类化合物作为溶剂和添加剂的作用机理及性能特点,针对腈类溶剂与石墨及锂金属不相容的问题,讨论了高浓度电解液、弱溶剂化电解液、含氟腈类电解液及共晶电解质等4种优化策略,并总结了各策略的实际应用前景及商业化过程中面临的局限性,明确指出添加剂是当前最有效的应用方式。此外,通过介绍含硅、硼、硫等元素的化学基团修饰的新型腈类添加剂,探究了不同官能团的作用机制及其应用潜力。最后,本文阐述了腈类化合物在开发与应用中面临的机遇与挑战,展望了通过合成工艺的优化与新型添加剂的开发,获得低黏度、高纯度、界面稳定性更强的多官能团腈类化合物,并探讨其在高电压电解液,尤其是在钴酸锂电池电解液中的应用前景。
中图分类号:
李南, 马静, 黄挺秀, 沈毅星, 沈旻, 江依义, 洪涛, 马国强, 马紫峰. 腈类化合物在高电压电解液中的研究进展[J]. 储能科学与技术, 2025, 14(3): 997-1009.
Nan LI, Jing MA, Tingxiu HUANG, Yixing SHEN, Min SHEN, Yiyi JIANG, Tao HONG, Guoqiang MA, Zifeng MA. Research progress on nitrile compounds in high potential electrolytes[J]. Energy Storage Science and Technology, 2025, 14(3): 997-1009.
表2
新型腈类添加剂在高电压锂离子电池中的性能比较"
电池体系 | 电解液(如无特殊说明均指质量比) | 电压/V | 容量保持率/% | 参考文献 |
---|---|---|---|---|
LiNi0.6Mn0.2Co0.2O2/ silicon–graphite | 1.0 mol/L LiPF6-EC∶DEC(1∶1,体积比),5% FEC,2% VC,1.0% TEOSCN | 2.5~4.35 | 75.95(0.5C,364cycles,45 ℃) | [ |
Li/Li4Ti5O12 | 1.15 mol/L LiPF6-EC∶EMC∶DMC (1∶1∶1), 2.0% OS3 | 1.0~2.5 | 80.00(1.0C, 150cycles, 25 ℃) | [ |
Li/LiCoO2 | 1.0 mol/L LiPF6-EC∶EMC∶DMC(1∶1∶1,体积比),0.5% 4-TB | 3.0~4.5 | 86.69(1.0C,100cycles, 25 ℃) | [ |
Li/LiCoO2 | 1.0 mol/L LiPF6-EC∶EMC∶DEC(1∶1∶1,体积比),2.0%TCEB | 2.75~4.5 | 78.20(1.0C,200cycles,25 ℃) | [ |
LiNi1/3Co1/3Mn1/3O2/ graphite Li/LiMn2O4 | 1.0 mol/L LiPF6-EC∶DMC∶EMC(1∶1∶1),0.2% SDPN; 1.0 mol/L LiPF6-EC∶DMC∶EMC(1∶1∶1),0.5% SDPN | 3.0~4.6; 3.0~4.3 | 77.30(0.2C,100cycles, 25 ℃) 70.30(1.0C,200cycles, 55 ℃) | [ [ |
Li/LiCoO2 Li/graphite | 1.0 mol/L LiPF6-EC∶EMC(3∶7),1.0% PSPN | 3.0~4.4; 0.01~3.0 | 74.81(0.5C,200cycles, 25 ℃) 92.58(0.5C,200cycles, 25℃) | [ |
Li/LiCoO2 | 1.0 mol/L LiPF6-EC∶EMC(3∶7),1.0%苯磺酰基乙腈(PSPAN) | 3.0~4.4 | 91.84(1.0C, 100cycles, 25 ℃) | [ |
Li/LiCoO2 | 1.0 mol/L LiPF6-EC∶DEC∶EMC(3∶2∶5),2.0% 4-苯甲腈三甲基硼酸酯(LBTB) | 3.0~4.4 | 73.21(1.0C,300cycles, 25 ℃) | [ |
Li/LiFePO4 Graphite/ LiNi0.6Co0.2Mn0.2O2 | 1.0 mol/L LiPF6-EC∶DMC∶DEC(1∶1∶1,体积比),1.0%CP; 1.0 mol/L LiPF6-EC∶EMC(1∶2),1.0% CP | 2.5~4.0; 3.0~4.5 | 76.70(1.0C,200cycles,60 ℃); 81.50(1.0C, 50cycles, 25 ℃) | [ [ |
LiCoO2/graphite | 1.0 mol/L LiPF6-EC∶DEC∶EMC(1∶1∶1),0.5%四氟对苯二腈(TFTPN) | 3.0~4.4 | 91.00(0.5C,300cycles, 25 ℃) | [ |
LiCoO2/graphite | 1.0 mol/L LiPF6-EC∶DEC∶EMC(1∶1∶1,体积比),5.0% FEC,1.0% BFBN | 3.0~4.55 | 80.00(0.5C,556cycles, 25 ℃; 148cycles, 45 ℃) | [ |
1 | LYU Y C, WU X, WANG K, et al. An overview on the advances of LiCoO2 cathodes for lithium-ion batteries[J]. Advanced Energy Materials, 2021, 11(2): 2000982. DOI: 10.1002/aenm.202000982. |
2 | WANG L L, CHEN B B, MA J, et al. Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density[J]. Chemical Society Reviews, 2018, 47(17): 6505-6602. DOI: 10.1039/c8cs00322j. |
3 | LI S, LI K L, ZHENG J Y, et al. Structural distortion-induced charge gradient distribution of Co ions in delithiated LiCoO2 cathode[J]. The Journal of Physical Chemistry Letters, 2019, 10(24): 7537-7546. DOI: 10.1021/acs.jpclett.9b02711. |
4 | WU Z X, ZENG G F, YIN J H, et al. Unveiling the evolution of LiCoO2 beyond 4.6 V[J]. ACS Energy Letters, 2023, 8(11): 4806-4817. DOI: 10.1021/acsenergylett.3c01954. |
5 | ZHANG Z J, WANG J, SUN X Y, et al. Improved stability of single-crystal LiCoO2 cathodes at 4.8 V through solvation structure regulation[J]. Advanced Functional Materials, 2024, 34(48): 2411409. DOI: 10.1002/adfm.202411409. |
6 | ZHANG A P, BI Z H, WANG G R, et al. Regulating electrode/electrolyte interfacial chemistry enables 4.6 V ultra-stable fast charging of commercial LiCoO2[J]. Energy & Environmental Science, 2024, 17(9): 3021-3031. DOI: 10.1039/D4EE00676C. |
7 | LI W, WANG H W, ZHANG J K, et al. Non-sacrificial additive enables a non-passivating cathode interface for 4.6 V Li||LiCoO2 batteries[J]. Advanced Energy Materials, 2024, 14(11): 2303458. DOI: 10.1002/aenm.202303458. |
8 | LI J Y, WANG J J, HUANG H, et al. Stabilization of LiCoO2 cathodes in high voltage lithium metal batteries through 2-(trifluoromethyl)benzamide (2-TFMBA) electrolyte additives[J]. Small, 2024, 20(29): 2400087. DOI: 10.1002/smll.202400087. |
9 | BIZUNEH G G, ZHU C L, HUANG J D, et al. Constructing highly Li+ conductive electrode electrolyte interphases for 4.6 V Li||LiCoO2 batteries via electrolyte additive engineering[J]. Small Methods, 2023, 7(9): e2300079. DOI: 10.1002/smtd.202300079. |
10 | UE M, IDA K, MORI S. Electrochemical properties of organic liquid electrolytes based on quaternary onium salts for electrical double-layer capacitors[J]. Journal of the Electrochemical Society, 141(11): 2989-2996. DOI: 10.1149/1.2059270. |
11 | CHEN S M, WEN K H, FAN J T, et al. Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: From liquid to solid electrolytes[J]. Journal of Materials Chemistry A, 2018, 6(25): 11631-11663. DOI: 10.1039/c8ta03358g. |
12 | HOU J B, YANG M, WANG D Y, et al. Fundamentals and challenges of lithium ion batteries at temperatures between -40 and 60 ℃[J]. Advanced Energy Materials, 2020, 10(18): 1904152. DOI: 10.1002/aenm.201904152. |
13 | 时二波, 甘朝伦, 张鹏, 等. 氰基化合物在锂离子电池中研究进展[J]. 电源技术, 2020, 44(2): 281-284. DOI: 10.3969/j.issn.1002-087X.2020.02.036. |
SHI E B, GAN C L, ZHANG P, et al. Research progress of nitrile-based compounds for lithium ion batteries[J]. Chinese Journal of Power Sources, 2020, 44(2): 281-284. DOI: 10.3969/j.issn.1002-087X.2020.02.036. | |
14 | 邓邦为, 孙大明, 万琦, 等. 锂离子电池三元正极材料电解液添加剂的研究进展[J]. 化学学报, 2018, 76(4): 30-48. DOI: 10.6023/A17110517. |
DENG B W, SUN D W, WAN Y, al. Review of electrolyte additives for ternary cathode lithium-ion battery[J]. Acta Chimica Sinica, 2018, 76(4): 30-48. DOI: 10.6023/A17110517. | |
15 | XU K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114(23): 11503-11618. DOI: 10.1021/cr500003w. |
16 | ZHOU X, KOZDRA M, RAN Q, et al. 3-(2,2,2-Trifluoroethoxy)propionitrile-based electrolytes for high energy density lithium metal batteries[J]. Nanoscale, 2022, 14(46): 17237-17246. DOI: 10.1039/d2nr04801a. |
17 | AN K, TRAN Y H T, KWAK S, et al. Design of fire-resistant liquid electrolyte formulation for safe and long-cycled lithium-ion batteries[J]. Advanced Functional Materials, 2021, 31(48): 2106102. DOI: 10.1002/adfm.202106102. |
18 | LUO L B, CHEN K A, CHEN H, et al. Enabling ultralow-temperature (–70 ℃) lithium-ion batteries: Advanced electrolytes utilizing weak-solvation and low-viscosity nitrile cosolvent[J]. Advanced Materials, 2024, 36(5): 2308881. DOI: 10.1002/adma.202308881. |
19 | YAAKOV D, GOFER Y, AURBACH D, et al. On the study of electrolyte solutions for Li-ion batteries that can work over a wide temperature range[J]. Journal of the Electrochemical Society, 2010, 157(12): A1383. DOI: 10.1149/1.3507259. |
20 | ROHAN R, KUO T C, LIN J H, et al. Dinitrile-mononitrile-based electrolyte system for lithium-ion battery application with the mechanism of reductive decomposition of mononitriles[J]. The Journal of Physical Chemistry C, 2016, 120(12): 6450-6458. DOI: 10.1021/acs.jpcc.6b00980. |
21 | KIM Y S, LEE H, SONG H K. Surface complex formation between aliphatic nitrile molecules and transition metal atoms for thermally stable lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(11): 8913-8920. DOI: 10.1021/am501671p. |
22 | DUNCAN H, SALEM N, ABU-LEBDEH Y. Electrolyte formulations based on dinitrile solvents for high voltage Li-ion batteries[J]. Journal of the Electrochemical Society, 2013, 160(6): A838-A848. DOI: 10.1149/2.088306jes. |
23 | LI M H, LIU Y, YANG X M, et al. Acetonitrile-based local high-concentration electrolytes for advanced lithium metal batteries[J]. Advanced Materials, 2024, 36(36): e2404271. DOI: 10.1002/adma.202404271. |
24 | MOON H, CHO S J, YU D E, et al. Nitrile electrolyte strategy for 4.9 V-class lithium-metal batteries operating in flame[J]. Energy & Environmental Materials, 2023, 6(3): e12383. DOI: 10.1002/eem2.12383. |
25 | YAMADA Y, FURUKAWA K, SODEYAMA K, et al. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries[J]. Journal of the American Chemical Society, 2014, 136(13): 5039-5046. DOI: 10.1021/ja412807w. |
26 | PENG Z, CAO X, GAO P Y, et al. High-power lithium metal batteries enabled by high-concentration acetonitrile-based electrolytes with vinylene carbonate additive[J]. Advanced Functional Materials, 2020, 30(24): 2001285. DOI: 10.1002/adfm.202001285. |
27 | QIN T, YANG H Y, WANG L, et al. Molecule design for non-aqueous wide-temperature electrolytes via the intelligentized screening method[J]. Angewandte Chemie International Edition, 2024, 63(37): e202408902. DOI: 10.1002/anie.202408902. |
28 | 凡俊田, 董陶, 张兰, 等. 锂离子电池高压电解液研究进展[J]. 过程工程学报, 2018, 18(6): 1167-1177. DOI: 10.12034/j.issn.1009-606X.218133. |
FAN J T, DONG T, ZHANG L, et al. Advances on high-voltage electrolyte of lithium ion batteries[J]. The Chinese Journal of Process Engineering, 2018, 18(6): 1167-1177. DOI: 10.12034/j.issn.1009-606X.218133. | |
29 | 李南, 马国强, 车海英, 等. 密度泛函理论在高电压电解液设计中的应用[J]. 化工进展, 2019, 38(7): 3253-3264. DOI: 10.16085/j.issn.1000-6613.2018-1808. |
LI N, MA G Q, CHE H Y, et al. Application of density functional theory in the design of high potential electrolyte[J]. Chemical Industry and Engineering Progress, 2019, 38(7): 3253-3264. DOI: 10.16085/j.issn.1000-6613.2018-1808. | |
30 | 马国强, 王莉, 张建君, 等. 含有氟代溶剂或含氟添加剂的锂离子电解液[J]. 化学进展, 2016, 28(9): 1299-1312. DOI: 10.7536/PC151212. |
MA G Q, WANG L, ZHANG J J, et al. Lithium-ion battery electrolyte containing fluorinated solvent and additive[J]. Progress in Chemistry, 2016, 28(9): 1299-1312. DOI: 10.7536/PC 151212. | |
31 | LU D, LI R H, RAHMAN M M, et al. Ligand-channel-enabled ultrafast Li-ion conduction[J]. Nature, 2024, 627(8002): 101-107. DOI: 10.1038/s41586-024-07045-4. |
32 | OLDIGES K, VON ASPERN N, CEKIC-LASKOVIC I, et al. Impact of trifluoromethylation of adiponitrile on aluminum dissolution behavior in dinitrile-based electrolytes[J]. Journal of the Electrochemical Society, 2018, 165(16): A3773-A3781. DOI: 10.1149/2.0461816jes. |
33 | XU G J, SHANGGUAN X H, DONG S M, et al. Formulation of blended-lithium-salt electrolytes for lithium batteries[J]. Angewandte Chemie International Edition, 2020, 59(9): 3400-3415. DOI: 10.1002/anie.201906494. |
34 | GABRYELCZYK A, IVANOV S, BUND A, et al. Corrosion of aluminium current collector in lithium-ion batteries: A review[J]. Journal of Energy Storage, 2021, 43: 103226. DOI: 10.1016/j.est.2021.103226. |
35 | LIANG Y H, WU W B, LI D P, et al. Highly stable lithium metal batteries by regulating the lithium nitrate chemistry with a modified eutectic electrolyte[J]. Advanced Energy Materials, 2022, 12(47): 2202493. DOI: 10.1002/aenm.202202493. |
36 | ZHANG J N, WU H, DU X F, et al. Smart deep eutectic electrolyte enabling thermally induced shutdown toward high-safety lithium metal batteries[J]. Advanced Energy Materials, 2023, 13(3): 2202529. DOI: 10.1002/aenm.202202529. |
37 | WU J X, LIANG Q H, YU X L, et al. Deep eutectic solvents for boosting electrochemical energy storage and conversion: A review and perspective[J]. Advanced Functional Materials, 2021, 31(22): 2011102. DOI: 10.1002/adfm.202011102. |
38 | AZMI S, KOUDAHI M F, FRACKOWIAK E. Reline deep eutectic solvent as a green electrolyte for electrochemical energy storage applications[J]. Energy & Environmental Science, 2022, 15(3): 1156-1171. DOI: 10.1039/D1EE02920G. |
39 | ZHAO L, XU A, CHENG Y, et al. A highly stable and non-flammable deep eutectic electrolyte for high-performance lithium metal batteries[J]. Angewandte Chemie International Edition, 2024, 63(43): e202411224. DOI: 10.1002/anie.202411224. |
40 | MA X S, WANG J K, WANG Z H, et al. Engineering strategies for high-voltage LiCoO2 based high-energy Li-ion batteries[J]. Electron, 2024, 2(3): e33. DOI: 10.1002/elt2.33. |
41 | WANG W L, ZENG X Y, HU H L, et al. 1,2,3,4-Tetrakis(2-cyanoethoxy)butane (TCEB)-assisted construction of self-repair electrode interface films to improve the performance of 4.5 V pouch LiCoO2/artificial graphite full cells operating at 45 ℃[J]. ACS Applied Materials & Interfaces, 2021, 13(50): 59925-59936. DOI: 10.1021/acsami.1c18252. |
42 | LI X, HAN X P, LI G, et al. Nonsacrificial nitrile additive for armoring high-voltage LiNi0.83Co0.07Mn0.1O2 cathode with reliable electrode-electrolyte interface toward durable battery[J]. Small, 2022, 18(30): e2202989. DOI: 10.1002/smll.202202989. |
43 | TANG C, CHEN Y W, ZHANG Z F, et al. Stable cycling of practical high-voltage LiCoO2 pouch cell via electrolyte modification[J]. Nano Research, 2023, 16(3): 3864-3871. DOI: 10.1007/s12274-022-4955-5. |
44 | YANG X R, LIN M, ZHENG G R, et al. Enabling stable high-voltage LiCoO2 operation by using synergetic interfacial modification strategy[J]. Advanced Functional Materials, 2020, 30(43): 2004664. DOI: 10.1002/adfm.202004664. |
45 | JI Y J, LI S G, ZHONG G M, et al. Synergistic effects of suberonitrile-LiBOB binary additives on the electrochemical performance of high-voltage LiCoO2 electrodes[J]. Journal of the Electrochemical Society, 2015, 162(13): A7015-A7023. DOI: 10.1149/2.0041513jes. |
46 | KIM G Y, DAHN J R. The effect of some nitriles as electrolyte additives in Li-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(3): A437-A447. DOI: 10.1149/2.0651503jes. |
47 | LI T T, LIN J L, XING L D, et al. Insight into the contribution of nitriles as electrolyte additives to the improved performances of the LiCoO2 cathode[J]. The Journal of Physical Chemistry Letters, 2022, 13(37): 8801-8807. DOI: 10.1021/acs.jpclett.2c02032. |
48 | ZHOU T, WANG J Z, LYU L, et al. Anion-π interaction and solvent dehydrogenation control enable high-voltage lithium-ion batteries[J]. Energy & Environmental Science, 2024, 17(23): 9185-9194. DOI: 10.1039/D4EE03027C. |
49 | ZHI H Z, XING L D, ZHENG X W, et al. Understanding how nitriles stabilize electrolyte/electrode interface at high voltage[J]. The Journal of Physical Chemistry Letters, 2017, 8(24): 6048-6052. DOI: 10.1021/acs.jpclett.7b02734. |
50 | DUAN K J, NING J R, ZHOU L, et al. 1-(2-Cyanoethyl)pyrrole enables excellent battery performance at high temperature via the synergistic effect of Lewis base and C≡N functional groups[J]. Chemical Communications, 2020, 56(60): 8420-8423. DOI: 10.1039/d0cc01528h. |
51 | SUN Z Y, ZHAO J W, ZHU M, et al. Critical problems and modification strategies of realizing high-voltage LiCoO2 cathode from electrolyte engineering[J]. Advanced Energy Materials, 2024, 14(8): 2303498. DOI: 10.1002/aenm.202303498. |
52 | 徐冲, 徐宁, 蒋志敏, 等. 锂离子电池产气机制及基于电解液的抑制策略[J]. 储能科学与技术, 2023, 12(7): 2119-2133. DOI: 10.19799/j.cnki.2095-4239.2023.0212. |
XU C, XU N, JIANG Z M, et al. Mechanisms of gas evolution and suppressing strategies based on the electrolyte in lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(7): 2119-2133. DOI: 10.19799/j.cnki.2095-4239.2023.0212. | |
53 | LIAO B, HU X L, XU M Q, et al. Constructing unique cathode interface by manipulating functional groups of electrolyte additive for graphite/LiNi0.6Co0.2Mn0.2O2 cells at high voltage[J]. The Journal of Physical Chemistry Letters, 2018, 9(12): 3434-3445. DOI: 10.1021/acs.jpclett.8b01099. |
54 | LIAO B, LI H Y, WANG X S, et al. Significantly improved cyclability of lithium manganese oxide, simultaneously inhibiting electrochemical and thermal decomposition of the electrolyte by the use of an additive[J]. RSC Advances, 2017, 7(74): 46594-46603. DOI: 10.1039/C7RA07870F. |
55 | SHI P C, LIU F F, FENG Y Z, et al. The synergetic effect of lithium bisoxalatodifluorophosphate and fluoroethylene carbonate on dendrite suppression for fast charging lithium metal batteries[J]. Small, 2020, 16(30): e2001989. DOI: 10.1002/smll.202001989. |
56 | YANG T X, ZENG H N, WANG W L, et al. Lithium bisoxalatodifluorophosphate (LiBODFP) as a multifunctional electrolyte additive for 5 V LiNi0.5Mn1.5O4-based lithium-ion batteries with enhanced electrochemical performance[J]. Journal of Materials Chemistry A, 2019, 7(14): 8292-8301. DOI: 10.1039/C9TA01293A. |
57 | FAN X L, WANG C S. High-voltage liquid electrolytes for Li batteries: Progress and perspectives[J]. Chemical Society Reviews, 2021, 50(18): 10486-10566. DOI: 10.1039/d1cs00450f. |
58 | PARK M W, PARK S, CHOI N S. Unanticipated mechanism of the trimethylsilyl motif in electrolyte additives on nickel-rich cathodes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(39): 43694-43704. DOI: 10.1021/acsami.0c11996. |
59 | MENG Y M, CHEN G R, SHI L Y, et al. operando Fourier transform infrared investigation of cathode electrolyte interphase dynamic reversible evolution on Li1.2Ni0.2Mn0.6O2[J]. ACS Applied Materials & Interfaces, 2019, 11(48): 45108-45117. DOI: 10.1021/acsami.9b17438. |
60 | AUPPERLE F, ESHETU G G, EBERMAN K W, et al. Realizing a high-performance LiNi0.6Mn0.2Co0.2O2/silicon-graphite full lithium ion battery cell via a designer electrolyte additive[J]. Journal of Materials Chemistry A, 2020, 8(37): 19573-19587. DOI: 10.1039/D0TA05827K. |
61 | GUILLOT S L, USREY M L, PEÑA-HUESO A, et al. Reduced gassing in lithium-ion batteries with organosilicon additives[J]. Journal of the Electrochemical Society, 2021, 168(3): 030533. DOI: 10.1149/1945-7111/abed25. |
62 | LEE H S, MA Z F, YANG X Q, et al. Synthesis of a series of fluorinated boronate compounds and their use as additives in lithium battery electrolytes[J]. Journal of the Electrochemical Society, 2004, 151(9): A1429. DOI: 10.1149/1.1779407. |
63 | LIU Q Y, YANG G J, LIU S, et al. Trimethyl borate as film-forming electrolyte additive to improve high-voltage performances[J]. ACS Applied Materials & Interfaces, 2019, 11(19): 17435-17443. DOI: 10.1021/acsami.9b03417. |
64 | ZHANG Z, LIU F Y, HUANG Z Y, et al. Enhancing the electrochemical performance of a high-voltage LiCoO2 cathode with a bifunctional electrolyte additive[J]. ACS Applied Energy Materials, 2021, 4(11): 12954-12964. DOI: 10.1021/acsaem.1c02593. |
65 | JOW T R, XU Kang, BORODIN Oleg, et al. Electrolytes for lithium and lithium-ion batteries[M]. New York: Springer, 2014. |
66 | GUO K L, ZHU C L, WANG H P, et al. Conductive Li+ moieties-rich cathode electrolyte interphase with electrolyte additive for 4.6 V well-cycled Li||LiCoO2 batteries[J]. Advanced Energy Materials, 2023, 13(20): 2204272. DOI: 10.1002/aenm.202204272. |
67 | ZHAO H J, YU X Q, LI J D, et al. Film-forming electrolyte additives for rechargeable lithium-ion batteries: Progress and outlook[J]. Journal of Materials Chemistry A, 2019, 7(15): 8700-8722. DOI: 10.1039/C9TA00126C. |
68 | XUE W J, GAO R, SHI Z, et al. Stabilizing electrode-electrolyte interfaces to realize high-voltage Li||LiCoO2 batteries by a sulfonamide-based electrolyte[J]. Energy & Environmental Science, 2021, 14(11): 6030-6040. DOI: 10.1039/D1EE01265G. |
69 | ZHENG X Z, HUANG T, PAN Y, et al. 3,3′-sulfonyldipropionitrile: A novel electrolyte additive that can augment the high-voltage performance of LiNi1/3Co1/3Mn1/3O2/graphite batteries[J]. Journal of Power Sources, 2016, 319: 116-123. DOI: 10.1016/j.jpowsour.2016.04.053. |
70 | HUANG T, ZHENG X Z, PAN Y, et al. 3,3′-sulfonyldipropionitrile: A novel additive to improve the high temperature performance of lithium-ion battery[J]. Electrochimica Acta, 2015, 156: 328-335. DOI: 10.1016/j.electacta.2015.01.006. |
71 | ZUO X X, DENG X, MA X D, et al. 3-(Phenylsulfonyl)propionitrile as a higher voltage bifunctional electrolyte additive to improve the performance of lithium-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(30): 14725-14733. DOI: 10.1039/C8TA04558E. |
72 | DENG X, ZUO X X, LIANG H Y, et al. (Phenylsulfonyl)acetonitrile as a high-voltage electrolyte additive to form a sulfide solid electrolyte interface film to improve the performance of lithium-ion batteries[J]. The Journal of Physical Chemistry C, 2019, 123(19): 12161-12168. DOI: 10.1021/acs.jpcc.9b02836. |
73 | SUN Z Y, ZHOU H B, LUO X H, et al. Design of a novel electrolyte additive for high voltage LiCoO2 cathode lithium-ion batteries: Lithium 4-benzonitrile trimethyl borate[J]. Journal of Power Sources, 2021, 503: 230033. DOI: 10.1016/j.jpowsour.2021.230033. |
74 | LIU Y L, WANG K, LIN Y L, et al. Tetrafluoroterephthalonitrile: a novel electrolyte additive for high-voltage lithium cobalt oxide/graphite battery [J]. Electrochimica Acta, 256: 307-315. |
[1] | 叶涛, 王怡君, 唐子龙, 潘国梁. 全钒液流电池电解液容量衰减及草酸恢复研究[J]. 储能科学与技术, 2025, 14(3): 1177-1186. |
[2] | 武小兰, 马彭杰, 白志峰, 刘成龙, 郭桂芳, 张锦华. 一种锂离子电池组智能PID双层主动均衡控制方法[J]. 储能科学与技术, 2025, 14(3): 1150-1159. |
[3] | 曾帅波, 李涌仪, 彭静, 何梓星, 梁倬健, 徐伟, 蓝凌霄, 梁兴华. 基于三元锂离子电池的导电剂优化设计[J]. 储能科学与技术, 2025, 14(3): 1187-1197. |
[4] | 张朝龙, 陈阳, 刘梦玲, 张俣峰, 华国庆, 阴盼昐. 一种基于ICA-T特征和CNN-LA-BiLSTM的锂离子电池健康状态估计方法[J]. 储能科学与技术, 2025, 14(3): 1258-1269. |
[5] | 许陈程, 王湛, 李爽, 蒋江民, 鞠治成. 锂离子电池预锂化技术研究进展及工程化应用展望[J]. 储能科学与技术, 2025, 14(3): 930-946. |
[6] | 陈会明, 蔡艺嘉, 尹文骥, 陈美芬, 黄有国, 胡思江, 王红强, 李庆余. 铬钼双掺杂调控富锂锰基正极材料结构和电化学性能[J]. 储能科学与技术, 2025, 14(3): 1123-1132. |
[7] | 周丽萍, 周德清, 郑锋华, 潘齐常, 胡思江, 蒋永杰, 王红强, 李庆余. 锂离子电池Si@Void@C复合负极材料的制备及其应用[J]. 储能科学与技术, 2025, 14(3): 1115-1122. |
[8] | 张新宇, 罗声豪, 吴颖欣, 刘针莹, 张立志, 凌子夜. 复合相变材料用于锂离子电池热管理和热失控防护研究进展[J]. 储能科学与技术, 2025, 14(3): 1040-1053. |
[9] | 周德清, 蔡艺嘉, 张子芩, 周丽萍, 胡思江, 黄有国, 王红强, 李庆余. MoS2 尖晶石包覆富锂锰基正极材料的电化学性能[J]. 储能科学与技术, 2025, 14(3): 1087-1096. |
[10] | 段双明, 夏馗峰, 朱微. 考虑多种应用场景的锂离子电池多阶优化充电策略[J]. 储能科学与技术, 2025, 14(2): 779-790. |
[11] | 张子恒, 耿萌萌, 范茂松, 金玉红, 刘晶冰, 杨凯, 汪浩. 基于弛豫时间分布法的退役动力电池健康状态评估[J]. 储能科学与技术, 2025, 14(2): 770-778. |
[12] | 李嘉波, 王志璇, 田迪, 孙中麟. 变模态分解下SSA-LSTM组合的锂离子电池剩余使用寿命预测方法[J]. 储能科学与技术, 2025, 14(2): 659-670. |
[13] | 张建茹, 王其钰, 姬瑛卉, 高鑫, 禹习谦, 李泓. 俄歇电子能谱在锂离子电池分析中的应用[J]. 储能科学与技术, 2025, 14(2): 755-769. |
[14] | 王海瑞, 徐长宇, 朱贵富, 侯晓建. 一种并行多尺度特征融合模型开展的基于弛豫电压的锂电池SOH估计研究[J]. 储能科学与技术, 2025, 14(2): 799-811. |
[15] | 匡智伟, 张振东, 盛雷, 付林祥. 储能用高容量锂离子电池低温快速加热方法研究[J]. 储能科学与技术, 2025, 14(2): 791-798. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||