储能科学与技术 ›› 2025, Vol. 14 ›› Issue (2): 755-769.doi: 10.19799/j.cnki.2095-4239.2024.0880
张建茹1(), 王其钰1(
), 姬瑛卉1, 高鑫2, 禹习谦1, 李泓1
收稿日期:
2024-09-19
修回日期:
2024-10-26
出版日期:
2025-02-28
发布日期:
2025-03-18
通讯作者:
王其钰
E-mail:momsnow@foxmail.com;qywang10@iphy.ac.cn
作者简介:
张建茹(1996—),女,硕士,工程师,主要研究方向为表面分析技术,E-mail:momsnow@foxmail.com;
基金资助:
Jianru ZHANG1(), Qiyu WANG1(
), Yinghui JI1, Xin GAO2, Xiqian YU1, Hong LI1
Received:
2024-09-19
Revised:
2024-10-26
Online:
2025-02-28
Published:
2025-03-18
Contact:
Qiyu WANG
E-mail:momsnow@foxmail.com;qywang10@iphy.ac.cn
摘要:
锂离子电池在研发和使用过程中,材料的表界面特性及其演变行为直接影响了电池的性能和应用。采用恰当的表面分析技术解析锂离子电池体系中表界面的组分、结构以及分布,有利于更好地探究界面性能优化,研究离子传输行为,以及分析电池失效机制。俄歇电子能谱(Auger electron spectroscopy, AES)是一种具有较高空间分辨率的电子束探针表面分析技术,可实现除H和He以外的大部分元素及其价态的定性和半定量分析,以及二维成像表征。本文介绍了俄歇电子能谱的技术原理、主要功能及分析方法,总结了其在锂离子电池研究中的应用案例及相关技巧,为AES表征技术在锂电池领域的广泛合理应用总结了经验,同时对AES技术在该领域的应用发展进行了展望。
中图分类号:
张建茹, 王其钰, 姬瑛卉, 高鑫, 禹习谦, 李泓. 俄歇电子能谱在锂离子电池分析中的应用[J]. 储能科学与技术, 2025, 14(2): 755-769.
Jianru ZHANG, Qiyu WANG, Yinghui JI, Xin GAO, Xiqian YU, Hong LI. Application of Auger electron spectroscopy in the analysis of lithium-ion batteries[J]. Energy Storage Science and Technology, 2025, 14(2): 755-769.
表1
常见的表面谱学表征技术及其特征参数"
表面谱学表征技术 | EDS (SEM) | XPS | AES | (TOF) SIMS |
---|---|---|---|---|
全称 | Energy dispersive x-ray spectroscopy | X-ray photoelectron spectroscopy | Auger electron spectroscopy | (Time of flight)Secondary ion mass spectroscopy |
中文名称 | 能量色散X射线光谱仪 | X射线光电子能谱 | 俄歇电子能谱 | (飞行时间)二次离子质谱 |
入射源 | 电子 | X射线 | 电子 | 离子(一般为Bi源) |
检测信号 | X射线 | 电子 | 电子 | 离子(二次离子) |
最小分析区域(直径) | 约1 μm | >10 μm | 约20 nm | 约70 nm |
检测深度(最小) | 约1 μm | 约6 nm | ≤5 nm | <1 nm |
深度剖析 | 需匹配FIB | √(Ar 溅射) | √(Ar 溅射) | √(Ar,O,Cs,GCIB等多种溅射) |
二维成像 | √ | × | √ | √ |
三维成像 | × | × | × | √ |
最低检测限 | 约0.5% | 约0.05% | 约0.1% | 约0.0001% |
检测元素 | B~U | Li~U | Li~U | H~U |
样品类型 | 导体(可喷金) | 导体、绝缘体 | 导体 | 固体 |
定量分析 | 一般 | 优 | 半定量 | 半定量 |
1 | 张舒, 王少飞, 凌仕刚, 等. 锂离子电池基础科学问题(X)——全固态锂离子电池[J]. 储能科学与技术, 2014, 3(4): 376-394. DOI: 10.3969/j.issn.2095-4239.2014.04.012. |
ZHANG S, WANG S F, LING S G, et al. Fundamental scientific aspects of lithium ion batteries(X)—All-solid-state lithium-ion batteries[J]. Energy Storage Science and Technology, 2014, 3(4): 376-394. DOI: 10.3969/j.issn.2095-4239.2014.04.012. | |
2 | 王晗, 安汉文, 单红梅, 等. 全固态电池界面的研究进展[J]. 物理化学学报, 2021, 37(11): 48-61. DOI: 10.3866/PKU.WHXB202007070. |
WANG H, AN H W, SHAN H M, et al. Research progress on interfaces of all-solid-state batteries[J]. Acta Physico-Chimica Sinica, 2021, 37(11): 48-61. DOI: 10.3866/PKU.WHXB 202007070. | |
3 | HUANG Y, CHEN B, DUAN J, et al. Graphitic carbon nitride (g-C3 N4): An interface enabler for solid-state lithium metal batteries[J]. Angewandte Chemie (International Ed), 2020, 59(9): 3699-3704. DOI:10.1002/anie.201914417. |
4 | ZHANG D C, ZHANG L, YANG K, et al. Superior blends solid polymer electrolyte with integrated hierarchical architectures for all-solid-state lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(42): 36886-36896. DOI:10.1021/acsami.7b12186. |
5 | LIN M X, BEN L B, SUN Y, et al. Insight into the atomic structure of high-voltage spinel LiNi0.5Mn1.5O4 cathode material in the first cycle[J]. Chemistry of Materials, 2015, 27(1): 292-303. DOI:10.1021/cm503972a. |
6 | FAN X M, HU G R, ZHANG B, et al. Crack-free single-crystalline Ni-rich layered NCM cathode enable superior cycling performance of lithium-ion batteries[J]. Nano Energy, 2020, 70: 104450. DOI:10.1016/j.nanoen.2020.104450. |
7 | TIAN F, BEN L B, YU H L, et al. Understanding high-temperature cycling-induced crack evolution and associated atomic-scale structure in a Ni-rich LiNi0.8Co0.1Mn0.1O2 layered cathode material[J]. Nano Energy, 2022, 98: 107222. DOI:10.1016/j.nanoen. 2022.107222. |
8 | 赵磊. 表面分析技术在半导体材料中的应用[J]. 电子技术与软件工程, 2019(16): 115-116. |
ZHAO L. Application of surface analysis technology in semiconductor materials[J]. Electronic Technology & Software Engineering, 2019(16): 115-116. | |
9 | 郭汉生. 消除俄歇电子能谱实验中氧化物表面荷电的新方法[J]. 材料研究学报, 2000, 14(B01): 53-57. |
GUO H S. A new method for compensation of the charging of oxides during aes[J]. Chinese Journal of Materials Research, 2000, 14(B01): 53-57. | |
10 | SEAH M P, DENCH W A. Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids[J]. Surface and Interface Analysis, 1979, 1(1): 2-11. DOI:10.1002/sia.740010103. |
11 | 张录平, 李晖, 刘亚平. 俄歇电子能谱仪在材料分析中的应用[J]. 分析仪器, 2009(4): 14-17. DOI: 10.3969/j.issn.1001-232X.2009.04.003. |
ZHANG L P, LI H, LIU Y P. Applications of Auger electron spectrometer in material analysis[J]. Analytical Instrumentation, 2009(4): 14-17. DOI: 10.3969/j.issn.1001-232X.2009.04.003. | |
12 | 刘江禄. 俄歇电子能谱及其在半导体中的应用[J]. 微电子学, 1980, 10(6): 39-50. |
LIU J L. Auger electron spectroscopy and its application in semiconductors[J]. Microelectronics, 1980, 10(6): 39-50. | |
13 | 王钤, 张强基, 华中一. 俄歇定量分析中确定背散射因子的一种新方法[J]. 物理学报, 1986, 35(7): 914-921. |
WANG Q, ZHANG Q J, HUA Z Y. A new method to determine backscattering factors for quantitative auger analysis[J]. Acta Physica Sinica, 1986, 35(7): 914-921. | |
14 | MORGEN P, HENRIKSEN B, KYRPING D. Ion etching methods for depth profiling of complex three-dimensional samples in combination with scanning Auger electron microscopy[J]. Vacuum, 2008, 82(9): 922-929. DOI:10.1016/j.vacuum. 2007.12.009. |
15 | 康红利, 简玮, 韩逸山, 等. 溅射深度剖析定量分析及其应用研究进展[J]. 汕头大学学报(自然科学版), 2016, 31(2): 3-24. |
KANG H L, JIAN W, HAN Y S, et al. Progress on the quantification of sputter depth profiling and its application[J]. Journal of Shantou University (Natural Science Edition), 2016, 31(2): 3-24. | |
16 | 吴正龙, 姚振钰, 刘志凯, 等. 图形衬底上硅区双离子束选择淀积Co研究[J]. 半导体学报, 1999, 20(11): 1010-1014. |
WU Z L, YAO Z Y, LIU Z K, et al. Selective deposition of cobalt on patterned substrate by dual ion beams techniques[J]. Chinese Journal of Semiconductors, 1999, 20(11): 1010-1014. | |
17 | 俄歇电子能谱分析[J]. 金属热处理, 2023, 48(10): 101. |
Auger electron spectroscopy[J]. Heat Treatment of Metals, 2023, 48(10): 101. | |
18 | JOHANSEN M, XU J, TAM P L, et al. Lithiated carbon fibres for structural batteries characterised with Auger electron spectroscopy[J]. Applied Surface Science, 2023, 627: 157323. DOI:10.1016/j.apsusc.2023.157323. |
19 | BRIGGS D, RIVIERE J C. Parctical surface analysis by Auger and X-ray photoelectron spectroscopy[M]. Chichester, New York: Wiley, 1983. |
20 | 徐富春. 微纳尺度表征的俄歇电子能谱新技术[D]. 厦门: 厦门大学, 2009. |
XU F C. New technology of auger electron spectroscopy characterized by micro-nano scale[D]. Xiamen: Xiamen University, 2009. | |
21 | SHIRLEY D A. High-resolution X-ray photoemission spectrum of the valence bands of gold[J]. Physical Review B, 1972, 5(12): 4709-4714. DOI:10.1103/PhysRevB.5.4709. |
22 | 龚海宁, 申华, 黄惠忠, 等. XPS中Tougaard法本底扣除初探[J]. 物理化学学报, 2002, 18(4): 326-331. DOI: 10.3866/PKU.WHXB 20020408. |
GONG H N, SHEN H, HUANG H Z, et al. Preliminary exploration of touggard's method used for the background subtraction in XPS[J]. Acta Physico-chimica Sinica, 2002, 18(4): 326-331. DOI: 10.3866/PKU.WHXB20020408. | |
23 | JANSSON C, TOUGAARD S, BEAMSON B D, et al. Surface and interface analysis[J]. 1995, 23: 484. |
24 | ZHU Y F, CAO L L. Auger chemical shift analysis and its applications to the identification of interface species in thin films[J]. Applied Surface Science, 1998, 133(3): 213-220. DOI:10.1016/S0169-4332(98)00206-2. |
25 | QUESNE-TURIN A, FLAHAUT D, CROGUENNEC L, et al. Surface reactivity of Li2MnO3: First-principles and experimental study[J]. ACS Applied Materials & Interfaces, 2017, 9(50): 44222-44230. DOI:10.1021/acsami.7b14826. |
26 | TANG C Y, MA Y H, HAASCH R T, et al. Insights into solid-electrolyte interphase induced Li-ion degradation from in situ auger electron spectroscopy[J]. The Journal of Physical Chemistry Letters, 2017, 8(24): 6226-6230. DOI:10.1021/acs.jpclett.7b02847. |
27 | TANG C Y, FENG L, HAASCH R T, et al. Surface redox on Li [Ni1/3Mn1/3Co1/3]O2 characterized by in situ X-ray photoelectron spectroscopy and in situ Auger electron spectroscopy[J]. Electrochimica Acta, 2018, 277: 197-204. DOI:10.1016/j.electacta. 2018.04.199. |
28 | ISHIDA N, FUKUMITSU H, KIMURA H, et al. Direct mapping of Li distribution in electrochemically lithiated graphite anodes using scanning Auger electron microscopy[J]. Journal of Power Sources, 2014, 248: 1118-1122. DOI:10.1016/j.jpowsour. 2013.09.121. |
29 | HOFFMANN M, ZIER M, OSWALD S, et al. Challenges for lithium species identification in complementary Auger and X-ray photoelectron spectroscopy[J]. Journal of Power Sources, 2015, 288: 434-440. DOI:10.1016/j.jpowsour.2015.04.144. |
30 | ISHIDA N, FUJITA D. Chemical-state imaging of Li using scanning Auger electron microscopy[J]. Journal of Electron Spectroscopy and Related Phenomena, 2013, 186: 39-43. DOI:10.1016/j.elspec.2013.03.001. |
31 | WINKLER V, HANEMANN T, BRUNS M. Comparative surface analysis study of the solid electrolyte interphase formation on graphite anodes in lithium-ion batteries depending on the electrolyte composition[J]. Surface and Interface Analysis, 2017, 49(5): 361-369. DOI:10.1002/sia.6139. |
32 | JUNG E Y, PARK C S, LEE J C, et al. Experimental study on solid electrolyte interphase of graphite electrode in Li-ion battery by surface analysis technique[J]. Molecular Crystals and Liquid Crystals, 2018, 663(1): 158-167. DOI:10.1080/15421406.2018.1470709. |
33 | HA Y, MARTIN T R, FRISCO S, et al. Evaluating the effect of electrolyte additive functionalities on NMC622/Si cell performance[J]. Journal of the Electrochemical Society, 2022, 169(7): 070515. DOI:10.1149/1945-7111/ac7e75. |
34 | DAVIS A L, GARCIA-MENDEZ R, WOOD K N, et al. Electro-chemo-mechanical evolution of sulfide solid electrolyte/Li metal interfaces: operando analysis and ALD interlayer effects[J]. Journal of Materials Chemistry A, 2020, 8(13): 6291-6302. DOI:10.1039/C9TA11508K. |
35 | TANG C Y, HAASCH R T, DILLON S J. In situ X-ray photoelectron and Auger electron spectroscopic characterization of reaction mechanisms during Li-ion cycling[J]. Chemical Communications, 2016, 52(90): 13257-13260. DOI:10.1039/c6cc08176b. |
36 | TANG C Y, LEUNG K, HAASCH R T, et al. LiMn2O4 surface chemistry evolution during cycling revealed by in situ auger electron spectroscopy and X-ray photoelectron spectroscopy[J]. ACS Applied Materials & Interfaces, 2017, 9(39): 33968-33978. DOI:10.1021/acsami.7b10442. |
37 | UHART A, LEDEUIL J B, PECQUENARD B, et al. Nanoscale chemical characterization of solid-state microbattery stacks by means of auger spectroscopy and ion-milling cross section preparation[J]. ACS Applied Materials & Interfaces, 2017, 9(38): 33238-33249. DOI:10.1021/acsami.7b07270. |
[1] | 段双明, 夏馗峰, 朱微. 考虑多种应用场景的锂离子电池多阶优化充电策略[J]. 储能科学与技术, 2025, 14(2): 779-790. |
[2] | 张子恒, 耿萌萌, 范茂松, 金玉红, 刘晶冰, 杨凯, 汪浩. 基于弛豫时间分布法的退役动力电池健康状态评估[J]. 储能科学与技术, 2025, 14(2): 770-778. |
[3] | 李嘉波, 王志璇, 田迪, 孙中麟. 变模态分解下SSA-LSTM组合的锂离子电池剩余使用寿命预测方法[J]. 储能科学与技术, 2025, 14(2): 659-670. |
[4] | 王海瑞, 徐长宇, 朱贵富, 侯晓建. 一种并行多尺度特征融合模型开展的基于弛豫电压的锂电池SOH估计研究[J]. 储能科学与技术, 2025, 14(2): 799-811. |
[5] | 匡智伟, 张振东, 盛雷, 付林祥. 储能用高容量锂离子电池低温快速加热方法研究[J]. 储能科学与技术, 2025, 14(2): 791-798. |
[6] | 李和雨, 洪小波, 陈子涵, 阮殿波. 多孔隔热板对锂离子电池模组热蔓延阻隔效果研究[J]. 储能科学与技术, 2025, 14(2): 479-487. |
[7] | 曹巍, 陈飞, 孔祥栋, 朱志成, 韩雪冰, 卢兰光, 郑岳久. 锂离子电池极片涂布工艺研究进展[J]. 储能科学与技术, 2025, 14(1): 90-103. |
[8] | 张建茹, 王其钰, 李庆浩, 张献英, 王碧童, 禹习谦, 李泓. 锂离子电池失效分析中的几种物性表征技术及其应用[J]. 储能科学与技术, 2025, 14(1): 286-309. |
[9] | 邢远秀, 刘颛玮, 邢玉峰, 王文波. BDD-DETR:高效感知小目标的锂电池表面缺陷检测[J]. 储能科学与技术, 2025, 14(1): 370-379. |
[10] | 李建萱, 林琛, 周忠凯. 基于减平均优化算法与双向长短期记忆网络的锂离子电池健康状态估算[J]. 储能科学与技术, 2025, 14(1): 358-369. |
[11] | 叶石丰, 洪朝锋, 綦晓, 吴伟雄, 谭子健, 周奇, 张兆阳. 基于EEMD-GRU-NN锂离子电池表面温度预测方法研究[J]. 储能科学与技术, 2025, 14(1): 380-387. |
[12] | 刘通, 杨瑰婷, 毕辉, 梅悦旎, 刘硕, 宫勇吉, 罗文雷. 高能量密度与高功率密度兼顾型锂离子电池研究现状与展望[J]. 储能科学与技术, 2025, 14(1): 54-76. |
[13] | 李可, 朱顺兵, 陶致格, 王赫. 复合水系灭火剂抑制磷酸铁锂电池火灾实验[J]. 储能科学与技术, 2025, 14(1): 140-151. |
[14] | 张文婧, 肖伟, 伊亚辉, 钱利勤. 锂离子电池安全改性策略研究进展[J]. 储能科学与技术, 2025, 14(1): 104-123. |
[15] | 刘勇, 于怀汶, 刘大鹏, 穆勇, 王瀛洲, 张秀宇. 基于ABC-LSTM模型的锂离子电池剩余使用寿命预测[J]. 储能科学与技术, 2025, 14(1): 331-345. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||