1 |
GE M F, LIU Y B, JIANG X X, et al. A review on state of health estimations and remaining useful life prognostics of lithium-ion batteries[J]. Measurement, 2021, 174: 109057.
|
2 |
LIU C, WANG Y J, CHEN Z H. Degradation model and cycle life prediction for lithium-ion battery used in hybrid energy storage system[J]. Energy, 2019, 166: 796-806.
|
3 |
刘月峰, 赵光权, 彭喜元. 多核相关向量机优化模型的锂电池剩余寿命预测方法[J]. 电子学报, 2019, 47(6): 1285-1292. DOI: 10.3969/j.issn.0372-2112.2019.06.015.
|
|
LIU Y F, ZHAO G Q, PENG X Y. A lithium-ion battery remaining using life prediction method based on multi-kernel relevance vector machine optimized model[J]. Acta Electronica Sinica, 2019, 47(6): 1285-1292. DOI: 10.3969/j.issn.0372-2112.2019.06.015.
|
4 |
KHODADADI SADABADI K, JIN X, RIZZONI G. Prediction of remaining useful life for a composite electrode lithium ion battery cell using an electrochemical model to estimate the state of health[J]. Journal of Power Sources, 2021, 481: 228861. DOI:10.1016/j.jpowsour.2020.228861.
|
5 |
EL MEJDOUBI A, CHAOUI H, GUALOUS H, et al. Lithium-ion batteries health prognosis considering aging conditions[J]. IEEE Transactions on Power Electronics, 2019, 34(7): 6834-6844.
|
6 |
YU J B. State of health prediction of lithium-ion batteries: Multiscale logic regression and Gaussian process regression ensemble[J]. Reliability Engineering & System Safety, 2018, 174: 82-95.
|
7 |
RAZAVI-FAR R, CHAKRABARTI S, SAIF M, et al. An integrated imputation-prediction scheme for prognostics of battery data with missing observations[J]. Expert Systems with Applications, 2019, 115: 709-723. DOI:10.1016/j.eswa.2018.08.033.
|
8 |
ALI M U, ZAFAR A, NENGROO S H, et al. Online remaining useful life prediction for lithium-ion batteries using partial discharge data features[J]. Energies, 2019, 12(22): 4366.
|
9 |
BAI G X, WANG P F, HU C. A self-cognizant dynamic system approach for prognostics and health management[J]. Journal of Power Sources, 2015, 278: 163-174.
|
10 |
TANG X P, YAO K, ZOU C F, et al. Predicting battery aging trajectory via a migrated aging model and Bayesian Monte Carlo method[J]. Energy Procedia, 2019, 158: 2456-2461.
|
11 |
WANG F K, HUANG C Y, MAMO T. Ensemble model based on stacked long short-term memory model for cycle life prediction of lithium-ion batteries[J]. Applied Sciences, 2020, 10(10): 3549.
|
12 |
ZHANG Y Z, XIONG R, HE H W, et al. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7): 5695-5705. DOI:10.1109/TVT.2018.2805189.
|
13 |
魏腾飞, 潘庭龙. 基于改进PSO优化LSTM网络的短期电力负荷预测[J]. 系统仿真学报, 2021, 33(8): 1866-1874. DOI: 10.16182/j.issn1004731x.joss.20-0297.
|
|
WEI T F, PAN T L. Short-term power load forecasting based on LSTM neural network optimized by improved PSO[J]. Journal of System Simulation, 2021, 33(8): 1866-1874.
|
14 |
LI S, FANG H J, SHI B. Remaining useful life estimation of Lithium-ion battery based on interacting multiple model particle filter and support vector regression[J]. Reliability Engineering & System Safety, 2021, 210: 107542. DOI:10.1016/j.ress.2021.107542.
|
15 |
常春, 王瑛琦, 姜久春, 等. 基于主动方波激励检测锂离子电池早期内短路[J]. 电池, 2024, 54(1): 24-28. DOI:10.19535/j.1001-1579. 2024.01.006.
|
|
CHANG C, WANG Y Q, JIANG J C, et al. Detection of early internal short circuit of Li-ion battery based on active square wave excitation[J]. Dianchi(Battery Bimonthly), 2024, 54(1): 24-28. DOI:10.19535/j.1001-1579.2024.01.006.
|
16 |
MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. DOI:10.1016/j.advengsoft.2016.01.008.
|
17 |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. DOI:10.1162/neco.1997.9.8.1735.
|
18 |
SHI Y M, TIAN Y H, WANG Y W, et al. Learning long-term dependencies for action recognition with a biologically-inspired deep network[C]//2017 IEEE International Conference on Computer Vision (ICCV). October 22-29, 2017, Venice, Italy. IEEE, 2017: 716-725. DOI:10.1109/ICCV.2017.84.
|